The impact of electrode characteristics on electrocorticography (ECoG)

Brian Wodlinger, Alan D. Degenhart, Jennifer L. Collinger, Elizabeth C. Tyler-Kabara, Wei Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

16 Scopus citations

Abstract

Used clinically since Penfield and Jasper's pioneering work in the 1950's, electrocorticography (ECoG) has recently been investigated as a promising technology for brain-computer interfacing. Many researchers have attempted to analyze the properties of ECoG recordings, including prediction of optimal electrode spacing and the improved resolution expected with smaller electrodes. This work applies an analytic model of the volume conductor to investigate the sensitivity field of electrodes of various sizes. The benefit to spatial resolution was minimal for electrodes smaller than 1mm, while smaller electrodes caused a dramatic decrease in signal-to-noise ratio. The temporal correlation between electrode pairs is predicted over a range of spacings and compared to correlation values from a series of recordings in subjects undergoing monitoring for intractable epilepsy. The observed correlations are found to be much higher than predicted by the analytic model and suggest a more detailed model of cortical activity is needed to identify appropriate ECoG grid spacing.

Original languageEnglish
Title of host publication33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Pages3083-3086
Number of pages4
DOIs
StatePublished - 2011
Event33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011 - Boston, MA, United States
Duration: Aug 30 2011Sep 3 2011

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2011
Country/TerritoryUnited States
CityBoston, MA
Period08/30/1109/3/11

Fingerprint

Dive into the research topics of 'The impact of electrode characteristics on electrocorticography (ECoG)'. Together they form a unique fingerprint.

Cite this