Abstract
After the anterior chamber (AC) injection of trinitrophenol-coupled (TNP) spleen cells, it is observed that systemic delayed-type hypersensitivity responses to TNP are inhibited by Ag-specific suppressor T cells. We recently reported that suppression is initiated by viable TNP-coupled T cells within the inoculum and upon further analysis we found that these cells have the surface phenotype of CD4+ Ts inducer cells. We report here that treatment of these TNP-T cells with cycloheximide or cytochalasin-B before to AC injection abolished suppression, whereas treatment with 2000 rad radiation does not. This indicates that protein synthesis and secretion are required to initiate suppression but proliferation is not. Further, we demonstrate the adoptive transfer of suppression by serum of AC inoculated animals. Detection of the component in serum in adoptive transfer assays, however, requires removal of the spleen before AC injection. We establish that the material in serum is a Ts cell product (T suppressor-inducer factor) based on three criteria: it is Ag specific, genetically restricted, and reactive with a mAb that specifically identifies these molecules. These results suggest that the signal leaving the eye to induce suppression of delayed-type hypersensitivity is T cell derived and that molecules mediating immune regulation for this organ are made within the eye and transported via the serum to the spleen.
Original language | English |
---|---|
Pages (from-to) | 821-826 |
Number of pages | 6 |
Journal | Journal of Immunology |
Volume | 143 |
Issue number | 3 |
State | Published - 1989 |