TY - JOUR
T1 - The IFN-γ receptor promotes immune dysregulation and disease in STING gain-of-function mice
AU - Stinson, W. Alexander
AU - Miner, Cathrine A.
AU - Zhao, Fang R.
AU - Lundgren, Annena Jane
AU - Poddar, Subhajit
AU - Miner, Jonathan J.
N1 - Publisher Copyright:
© 2022, Stinson et al. This is an open access article published under the terms of the Creative Commons Attribution 4.0 International License.
PY - 2022/9/8
Y1 - 2022/9/8
N2 - STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αβ T cell–dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ–induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-β, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.
AB - STING gain-of-function mutations cause STING-associated vasculopathy with onset in infancy (SAVI) in humans, a disease characterized by spontaneous lung inflammation and fibrosis. Mice with STING gain-of-function mutations (SAVI mice) develop αβ T cell–dependent lung disease and also lack lymph nodes. Although SAVI has been regarded as a type I interferonopathy, the relative contributions of the three interferon receptors are incompletely understood. Here, we show that STING gain of function led to upregulation of IFN-γ–induced chemokines in the lungs of SAVI mice and that deletion of the type II IFN receptor (IFNGR1), but not the type I IFN receptor (IFNAR1) or type III IFN receptor (IFNλR1), ameliorated lung disease and restored lymph node development in SAVI mice. Furthermore, deletion of IFNGR1, but not IFNAR1 or IFNλR1, corrected the ratio of effector to Tregs in SAVI mice and in mixed bone marrow chimeric mice. Finally, cultured SAVI mouse macrophages were hyperresponsive to IFN-γ, but not IFN-β, in terms of Cxcl9 upregulation and cell activation. These results demonstrate that IFNGR1 plays a major role in autoinflammation and immune dysregulation mediated by STING gain of function.
UR - http://www.scopus.com/inward/record.url?scp=85137428963&partnerID=8YFLogxK
U2 - 10.1172/jci.insight.155250
DO - 10.1172/jci.insight.155250
M3 - Article
C2 - 36073546
AN - SCOPUS:85137428963
SN - 2379-3708
VL - 7
JO - JCI Insight
JF - JCI Insight
IS - 17
M1 - e155250
ER -