TY - JOUR
T1 - The Growth Dependent Design Constraints of Transcription-Factor-Based Metabolite Biosensors
AU - Hartline, Christopher J.
AU - Zhang, Fuzhong
N1 - Publisher Copyright:
© 2022 American Chemical Society. All rights reserved.
PY - 2022/7/15
Y1 - 2022/7/15
N2 - Metabolite biosensors based on metabolite-responsive transcription factors are key synthetic biology components for sensing and precisely controlling cellular metabolism. Biosensors are often designed under laboratory conditions but are deployed in applications where cellular growth rate differs drastically from its initial characterization. Here we asked how growth rate impacts the minimum and maximum biosensor outputs and the dynamic range, which are key metrics of biosensor performance. Using LacI, TetR, and FadR-based biosensors in Escherichia coli as models, we find that the dynamic range of different biosensors have different growth rate dependencies. We developed a kinetic model to explore how tuning biosensor parameters impact the dynamic range growth rate dependence. Our modeling and experimental results revealed that the effects to dynamic range and its growth rate dependence are often coupled, and the metabolite transport mechanisms shape the dynamic range-growth rate response. This work provides a systematic understanding of biosensor performance under different growth rates, which will be useful for predicting biosensor behavior in broad synthetic biology and metabolic engineering applications.
AB - Metabolite biosensors based on metabolite-responsive transcription factors are key synthetic biology components for sensing and precisely controlling cellular metabolism. Biosensors are often designed under laboratory conditions but are deployed in applications where cellular growth rate differs drastically from its initial characterization. Here we asked how growth rate impacts the minimum and maximum biosensor outputs and the dynamic range, which are key metrics of biosensor performance. Using LacI, TetR, and FadR-based biosensors in Escherichia coli as models, we find that the dynamic range of different biosensors have different growth rate dependencies. We developed a kinetic model to explore how tuning biosensor parameters impact the dynamic range growth rate dependence. Our modeling and experimental results revealed that the effects to dynamic range and its growth rate dependence are often coupled, and the metabolite transport mechanisms shape the dynamic range-growth rate response. This work provides a systematic understanding of biosensor performance under different growth rates, which will be useful for predicting biosensor behavior in broad synthetic biology and metabolic engineering applications.
KW - biological circuit
KW - context dependence
KW - dynamic pathway regulation
KW - metabolic engineering
KW - metabolite biosensor
KW - transcriptional regulator
UR - http://www.scopus.com/inward/record.url?scp=85134138482&partnerID=8YFLogxK
U2 - 10.1021/acssynbio.2c00143
DO - 10.1021/acssynbio.2c00143
M3 - Article
C2 - 35700119
AN - SCOPUS:85134138482
SN - 2161-5063
VL - 11
SP - 2247
EP - 2258
JO - ACS synthetic biology
JF - ACS synthetic biology
IS - 7
ER -