TY - JOUR
T1 - The Forkhead Box M1 Transcription Factor Contributes to the Development and Growth of Mouse Colorectal Cancer
AU - Yoshida, Yuichi
AU - Wang, I. Ching
AU - Yoder, Helena M.
AU - Davidson, Nicholas O.
AU - Costa, Robert H.
PY - 2007/4
Y1 - 2007/4
N2 - Background & Aims: In this study, we used Forkhead Box m1b (Foxm1b) transgenic mice and conditional Foxm1 knock-out mice to examine the role of Foxm1 in colon cancer development and proliferation. Methods: To induce mouse colorectal cancer, we used a single intraperitoneal injection of azoxymethane (AOM) followed by three 1-week cycles of 2.5% dextran sodium sulfate (DSS) water, each cycle separated by 2 weeks. For these colon tumor studies, we used either Rosa26-Foxm1b transgenic mice that ubiquitously expressed the human Foxm1b complementary DNA or mice in which the Foxm1 fl/fl targeted allele was deleted in colonic epithelial cells using the gut-specific Villin-Cre recombinase transgene (Villin-Cre). Colorectal tumor number and bromodeoxyuridine labeling were determined in Rosa26-Foxm1b mice, Villin-Cre Foxm1-/-, mice and wild-type mice after 12 weeks of AOM/DDS exposure. We also used Foxm1 small interfering RNA-depleted human DLD1 and mouse CT26 colon cancer cell lines to examine DNA replication and anchorage-independent growth. Results: After 12 weeks of treatment with AOM/DSS, Rosa26 Foxm1b transgenic mice showed an increase in the number and size of colorectal tumors compared with wild-type mice. Likewise, a significant reduction in the development and growth of colorectal tumors was found in Villin-Cre Foxm1-/- mice compared with Foxm1 fl/fl mice after AOM/DSS treatment, which was associated with decreased expression of cyclin A2, cyclin B1, survivin, and T-cell factor 4 genes. Moreover, Foxm1-depleted colon cancer cell lines showed reduced DNA replication and anchorage-independent growth. Conclusions: These studies suggest that Foxm1 is critical for the proliferation and growth of colorectal cancer.
AB - Background & Aims: In this study, we used Forkhead Box m1b (Foxm1b) transgenic mice and conditional Foxm1 knock-out mice to examine the role of Foxm1 in colon cancer development and proliferation. Methods: To induce mouse colorectal cancer, we used a single intraperitoneal injection of azoxymethane (AOM) followed by three 1-week cycles of 2.5% dextran sodium sulfate (DSS) water, each cycle separated by 2 weeks. For these colon tumor studies, we used either Rosa26-Foxm1b transgenic mice that ubiquitously expressed the human Foxm1b complementary DNA or mice in which the Foxm1 fl/fl targeted allele was deleted in colonic epithelial cells using the gut-specific Villin-Cre recombinase transgene (Villin-Cre). Colorectal tumor number and bromodeoxyuridine labeling were determined in Rosa26-Foxm1b mice, Villin-Cre Foxm1-/-, mice and wild-type mice after 12 weeks of AOM/DDS exposure. We also used Foxm1 small interfering RNA-depleted human DLD1 and mouse CT26 colon cancer cell lines to examine DNA replication and anchorage-independent growth. Results: After 12 weeks of treatment with AOM/DSS, Rosa26 Foxm1b transgenic mice showed an increase in the number and size of colorectal tumors compared with wild-type mice. Likewise, a significant reduction in the development and growth of colorectal tumors was found in Villin-Cre Foxm1-/- mice compared with Foxm1 fl/fl mice after AOM/DSS treatment, which was associated with decreased expression of cyclin A2, cyclin B1, survivin, and T-cell factor 4 genes. Moreover, Foxm1-depleted colon cancer cell lines showed reduced DNA replication and anchorage-independent growth. Conclusions: These studies suggest that Foxm1 is critical for the proliferation and growth of colorectal cancer.
UR - http://www.scopus.com/inward/record.url?scp=34247221487&partnerID=8YFLogxK
U2 - 10.1053/j.gastro.2007.01.036
DO - 10.1053/j.gastro.2007.01.036
M3 - Article
C2 - 17408638
AN - SCOPUS:34247221487
SN - 0016-5085
VL - 132
SP - 1420
EP - 1431
JO - Gastroenterology
JF - Gastroenterology
IS - 4
ER -