The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice

Jui He Tsai, Maggie M.Y. Chi, Maureen B. Schulte, Kelle H. Moley

Research output: Contribution to journalArticle

29 Scopus citations

Abstract

Embryo implantation and development requires the endometrial stromal cells (ESCs) to undergo decidualization. This differentiation process requires glucose utilization, and blockade of the pentose phosphate pathway inhibits decidualization of ESCs both in vitro and in vivo. Glucose and fatty acids are energy substrates for many cell types, and fatty acid beta-oxidation is critical for embryo implantation. Here, we investigated whether beta-oxidation is required for decidualization of ESCs. As assessed by marker gene expression, decidualization of human primary ESCs was blocked by reducing activity of carnitine calmitoyltransferase I, the rate-limiting enzyme in beta-oxidation, either by short hairpin RNA-mediated silencing or by treatment with the inhibitor etomoxir. Ranolazine (RAN), a partial beta-oxidation inhibitor, blocked early decidualization of a human ESC line. However, decidualization resumed after several days, most likely due to a compensatory up-regulation of GLUT1 expression and an increase in glucose metabolism. Simultaneous inhibition of the beta-oxidation pathway with RAN and the pentose phosphate pathway with glucosamine (GlcN) impaired in vitro decidualization of human ESCs more strongly than inhibition of either pathway alone. These findings were confirmed in murine ESCs in vitro, and exposure to RAN plus GlcN inhibited decidualization in vivo in a deciduoma model. Finally, intrauterine implantation of time-release RAN and GlcN pellets reduced pup number. Importantly, pup number returned to normal after the end of the pellet-active period. This work indicates that both fatty acids and glucose metabolism pathways are important for ESC decidualization, and suggests novel pathways to target for the design of future nonhormonal contraceptives.

Original languageEnglish
Article numberArticle 34
JournalBiology of reproduction
Volume90
Issue number2
DOIs
StatePublished - Feb 2014

Keywords

  • Decidua
  • Decidualization
  • Endometrial stromal cells
  • Endometrium
  • Fatty acid oxidation
  • Glucosamine
  • Metabolism
  • Pentose phosphate pathway
  • Ranolazine
  • β-oxidation

Fingerprint Dive into the research topics of 'The fatty acid beta-oxidation pathway is important for decidualization of endometrial stromal cells in both humans and mice'. Together they form a unique fingerprint.

  • Cite this