TY - JOUR
T1 - The enzymes of the 10-formyl-tetrahydrofolate synthetic pathway are found exclusively in the cytosol of the trypanosomatid parasite Leishmania major
AU - Vickers, Tim J.
AU - Murta, Silvane M.F.
AU - Mandell, Michael A.
AU - Beverley, Stephen M.
N1 - Funding Information:
We thank D. Scott, Andrew Hanson and Jesse Gregory III for discussions, Valeria Naponelli, J. Gregory and A. Hanson for preliminary studies of C1-THF levels. This work was supported by National Institutes of Health Grant AI21903 (to S.M.B.); Brazilian agencies: CNPq and FAPEMIG (to S.M.F.M.) and European Molecular Biology Organization long-term fellowship ALTF 106-2005 (to T.V.).
PY - 2009/8
Y1 - 2009/8
N2 - In most organisms 10-formyl-tetrahydrofolate (10-CHO-THF) participates in the synthesis of purines in the cytosol and formylation of mitochondrial initiator methionyl-tRNAMet. Here we studied 10-CHO-THF biosynthesis in the protozoan parasite Leishmania major, a purine auxotroph. Two distinct synthetic enzymes are known, a bifunctional methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (DHCH) or formyl-tetrahydrofolate ligase (FTL), and phylogenomic profiling revealed considerable diversity for these in trypanosomatids. All species surveyed contain a DHCH1, which was shown recently to be essential in L. major. A second DHCH2 occurred only in L. infantum, L. mexicana and T. cruzi, and as a pseudogene in L. major. DHCH2s bear N-terminal extensions and we showed a LiDHCH2-GFP fusion was targeted to the mitochondrion. FTLs were found in all species except Trypanosoma brucei. L. major ftl- null mutants were phenotypically normal in growth, differentiation, animal infectivity and sensitivity to a panel of pteridine analogs, but grew more slowly when starved for serine or glycine, as expected for amino acids that are substrates in C1-folate metabolism. Cell fractionation and western blotting showed that both L. major DHCH1 and FTL were localized to the cytosol and not the mitochondrion. These localization data predict that in L. major cytosolic 10-formyl-tetrahydrofolate must be transported into the mitochondrion to support methionyl-tRNAMet formylation. The retention in all the trypanosomatids of at least one enzyme involved in 10-formyl-tetrahydrofolate biosynthesis, and the essentiality of this metabolite in L. major, suggests that this pathway represents a promising new area for chemotherapeutic attack in these parasites.
AB - In most organisms 10-formyl-tetrahydrofolate (10-CHO-THF) participates in the synthesis of purines in the cytosol and formylation of mitochondrial initiator methionyl-tRNAMet. Here we studied 10-CHO-THF biosynthesis in the protozoan parasite Leishmania major, a purine auxotroph. Two distinct synthetic enzymes are known, a bifunctional methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (DHCH) or formyl-tetrahydrofolate ligase (FTL), and phylogenomic profiling revealed considerable diversity for these in trypanosomatids. All species surveyed contain a DHCH1, which was shown recently to be essential in L. major. A second DHCH2 occurred only in L. infantum, L. mexicana and T. cruzi, and as a pseudogene in L. major. DHCH2s bear N-terminal extensions and we showed a LiDHCH2-GFP fusion was targeted to the mitochondrion. FTLs were found in all species except Trypanosoma brucei. L. major ftl- null mutants were phenotypically normal in growth, differentiation, animal infectivity and sensitivity to a panel of pteridine analogs, but grew more slowly when starved for serine or glycine, as expected for amino acids that are substrates in C1-folate metabolism. Cell fractionation and western blotting showed that both L. major DHCH1 and FTL were localized to the cytosol and not the mitochondrion. These localization data predict that in L. major cytosolic 10-formyl-tetrahydrofolate must be transported into the mitochondrion to support methionyl-tRNAMet formylation. The retention in all the trypanosomatids of at least one enzyme involved in 10-formyl-tetrahydrofolate biosynthesis, and the essentiality of this metabolite in L. major, suggests that this pathway represents a promising new area for chemotherapeutic attack in these parasites.
KW - Formyl tetrahydrofolate ligase
KW - Formyl-methionyl-tRNA
KW - Glycine
KW - Methylene tetrahydrofolate cyclohydrolase/dehydrogenase
KW - Serine
KW - Virulence
UR - http://www.scopus.com/inward/record.url?scp=67349156399&partnerID=8YFLogxK
U2 - 10.1016/j.molbiopara.2009.03.009
DO - 10.1016/j.molbiopara.2009.03.009
M3 - Article
C2 - 19450731
AN - SCOPUS:67349156399
SN - 0166-6851
VL - 166
SP - 142
EP - 152
JO - Molecular and Biochemical Parasitology
JF - Molecular and Biochemical Parasitology
IS - 2
ER -