The emerging genetics of primary ciliary dyskinesia

Maimoona A. Zariwala, Heymut Omran, Thomas W. Ferkol

Research output: Contribution to journalArticlepeer-review

80 Scopus citations


Primary ciliary dyskinesia (PCD) is an autosomal recessive, rare, genetically heterogeneous condition characterized by oto-sinopulmonary disease together with situs abnormalities (Kartagener syndrome) owing to abnormal ciliary structure and function. Most patients are currently diagnosed with PCD based on the presence of defective ciliary ultrastructure. However, diagnosis often remains challenging due to variability in the clinical phenotype and ciliary ultrastructural changes. Some patients with PCD have normal ciliary ultrastructure, which further confounds the diagnosis. A genetic test for PCD exists but is of limited value because it investigates only a limited number of mutations in only two genes. The genetics of PCD is complicated owing to the complexity of axonemal structure that is highly conserved through evolution, which is comprised of multiple proteins. Identifying a PCD-causing gene is challenging due to locus and allelic heterogeneity. Despite genetic heterogeneity, multiple tools have been used, and there are 11 known PCD-causing genes. All of these genes combined explain approximately 50% of PCD cases; hence, more genes need to be identified. This review briefly describes the current knowledge regarding the genetics of PCD and focuses on the methodologies used to identify novel PCD-causing genes, including a candidate gene approach using model organisms, next-generation massively parallel sequencing techniques, and the use of genetically isolated populations. In conclusion, we demonstrate the multipronged approach that is necessary to circumvent challenges due to genetic heterogeneity to uncover genetic causes of PCD.

Original languageEnglish
Pages (from-to)430-433
Number of pages4
JournalProceedings of the American Thoracic Society
Issue number5
StatePublished - Sep 15 2011


  • Cilia
  • Dextrocardia
  • Dynein
  • Heterotaxy
  • Kartagener syndrome


Dive into the research topics of 'The emerging genetics of primary ciliary dyskinesia'. Together they form a unique fingerprint.

Cite this