TY - JOUR
T1 - The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation
AU - Langdon, Amy
AU - Crook, Nathan
AU - Dantas, Gautam
N1 - Funding Information:
AL is supported in part by a Clinical and Translational Science Award (CTSA) program of the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health (NIH), under award numbers UL1 TR000448 and TL1 TR000449. NC is supported in part by the Pediatric Gastroenterology Research Training Program of the NIH, under award number T32 DK077653. This work was supported in part by the National Institute of General Medical Sciences (grant numberR01-GM099538) and the NIH Director’s New Innovator Award (number DP2-DK-098089) to GD. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.
Publisher Copyright:
© 2016 Langdon et al.
PY - 2016/4/13
Y1 - 2016/4/13
N2 - The widespread use of antibiotics in the past 80years has saved millions of human lives, facilitated technological progress and killed incalculable numbers of microbes, both pathogenic and commensal. Human-associated microbes perform an array of important functions, and we are now just beginning to understand the ways in which antibiotics have reshaped their ecology and the functional consequences of these changes. Mounting evidence shows that antibiotics influence the function of the immune system, our ability to resist infection, and our capacity for processing food. Therefore, it is now more important than ever to revisit how we use antibiotics. This review summarizes current research on the short-term and long-term consequences of antibiotic use on the human microbiome, from early life to adulthood, and its effect on diseases such as malnutrition, obesity, diabetes, and Clostridium difficile infection. Motivated by the consequences of inappropriate antibiotic use, we explore recent progress in the development of antivirulence approaches for resisting infection while minimizing resistance to therapy. We close the article by discussing probiotics and fecal microbiota transplants, which promise to restore the microbiota after damage of the microbiome. Together, the results of studies in this field emphasize the importance of developing a mechanistic understanding of gut ecology to enable the development of new therapeutic strategies and to rationally limit the use of antibiotic compounds.
AB - The widespread use of antibiotics in the past 80years has saved millions of human lives, facilitated technological progress and killed incalculable numbers of microbes, both pathogenic and commensal. Human-associated microbes perform an array of important functions, and we are now just beginning to understand the ways in which antibiotics have reshaped their ecology and the functional consequences of these changes. Mounting evidence shows that antibiotics influence the function of the immune system, our ability to resist infection, and our capacity for processing food. Therefore, it is now more important than ever to revisit how we use antibiotics. This review summarizes current research on the short-term and long-term consequences of antibiotic use on the human microbiome, from early life to adulthood, and its effect on diseases such as malnutrition, obesity, diabetes, and Clostridium difficile infection. Motivated by the consequences of inappropriate antibiotic use, we explore recent progress in the development of antivirulence approaches for resisting infection while minimizing resistance to therapy. We close the article by discussing probiotics and fecal microbiota transplants, which promise to restore the microbiota after damage of the microbiome. Together, the results of studies in this field emphasize the importance of developing a mechanistic understanding of gut ecology to enable the development of new therapeutic strategies and to rationally limit the use of antibiotic compounds.
UR - http://www.scopus.com/inward/record.url?scp=84963613854&partnerID=8YFLogxK
U2 - 10.1186/s13073-016-0294-z
DO - 10.1186/s13073-016-0294-z
M3 - Review article
C2 - 27074706
AN - SCOPUS:84963613854
VL - 8
JO - Genome Medicine
JF - Genome Medicine
SN - 1756-994X
IS - 1
M1 - 39
ER -