TY - JOUR
T1 - The effect of impaired angiogenesis on intestinal function following massive small bowel resection
AU - Diaz-Miron, Jose
AU - Sun, Raphael
AU - Choi, Pamela
AU - Sommovilla, Joshua
AU - Guo, Jun
AU - Erwin, Christopher R.
AU - Mei, Junjie
AU - Scott Worthen, G.
AU - Warner, Brad W.
N1 - Publisher Copyright:
© 2015 Elsevier Inc. All rights reserved.
PY - 2015/6/1
Y1 - 2015/6/1
N2 - Purpose Intestinal adaptation involves villus lengthening, crypt deepening, and increased capillary density following small bowel resection (SBR). Mice lacking the proangiogenic chemokine CXCL5 have normal structural adaptation but impaired angiogenesis. This work evaluates the impact of incomplete adaptive angiogenesis on the functional capacity of the intestine after SBR. Methods CXCL5 knockout (KO) and C57BL/6 wild-type (WT) mice underwent 50% SBR. Magnetic resonance imaging measured weekly body composition. Intestinal absorptive capacity was evaluated through fecal fat analysis. Gene expression profiles for select macronutrient transporters were measured via RT-PCR. Postoperative crypt and villus measurements were assessed for structural adaptation. Submucosal capillary density was measured through CD31 immunohistochemistry. Results Comparable postoperative weight gain occurred initially. Diminished weight gain, impaired fat absorption, and elevated steatorrhea occurred in KO mice after instituting high-fat diet. Greater postoperative upregulation of ABCA1 fat transporter occurred in WT mice, while PEPT1 protein transporter was significantly downregulated in KO mice. KO mice had impaired angiogenesis but intact structural adaptation. Conclusion After SBR, KO mice display an inefficient intestinal absorption profile with perturbed macronutrient transporter expression, impaired fat absorption, and slower postoperative weight gain. In addition to longer villi and deeper crypts, an intact angiogenic response may be required to achieve functional adaptation to SBR.
AB - Purpose Intestinal adaptation involves villus lengthening, crypt deepening, and increased capillary density following small bowel resection (SBR). Mice lacking the proangiogenic chemokine CXCL5 have normal structural adaptation but impaired angiogenesis. This work evaluates the impact of incomplete adaptive angiogenesis on the functional capacity of the intestine after SBR. Methods CXCL5 knockout (KO) and C57BL/6 wild-type (WT) mice underwent 50% SBR. Magnetic resonance imaging measured weekly body composition. Intestinal absorptive capacity was evaluated through fecal fat analysis. Gene expression profiles for select macronutrient transporters were measured via RT-PCR. Postoperative crypt and villus measurements were assessed for structural adaptation. Submucosal capillary density was measured through CD31 immunohistochemistry. Results Comparable postoperative weight gain occurred initially. Diminished weight gain, impaired fat absorption, and elevated steatorrhea occurred in KO mice after instituting high-fat diet. Greater postoperative upregulation of ABCA1 fat transporter occurred in WT mice, while PEPT1 protein transporter was significantly downregulated in KO mice. KO mice had impaired angiogenesis but intact structural adaptation. Conclusion After SBR, KO mice display an inefficient intestinal absorption profile with perturbed macronutrient transporter expression, impaired fat absorption, and slower postoperative weight gain. In addition to longer villi and deeper crypts, an intact angiogenic response may be required to achieve functional adaptation to SBR.
KW - Angiogenesis
KW - CXCL5
KW - Functional intestinal adaptation
KW - High-fat diet
KW - Small bowel resection
UR - http://www.scopus.com/inward/record.url?scp=84929509375&partnerID=8YFLogxK
U2 - 10.1016/j.jpedsurg.2015.03.014
DO - 10.1016/j.jpedsurg.2015.03.014
M3 - Article
C2 - 25818317
AN - SCOPUS:84929509375
SN - 0022-3468
VL - 50
SP - 948
EP - 953
JO - Journal of Pediatric Surgery
JF - Journal of Pediatric Surgery
IS - 6
ER -