The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains

Sangyeul Han, Sun Kim, Samira Bahl, Lin Li, Clara F. Burande, Nicole Smith, Marianne James, Roberta L. Beauchamp, Pradeep Bhide, Aaron DiAntonio, Vijaya Ramesh

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Pam and its homologs (the PHR protein family) are large E3 ubiquitin ligases that function to regulate synapse formation and growth in mammals, zebrafish, Drosophila, and Caenorhabditis elegans. Phr1-deficient mouse models (Phr1Δ8,9 and Phr1Magellan, with deletions in the N-terminal putative guanine exchange factor region and the C-terminal ubiquitin ligase region, respectively) exhibit axon guidance/outgrowth defects and striking defects of major axon tracts in the CNS. Our earlier studies identified Pam to be associated with tuberous sclerosis complex (TSC) proteins, ubiquitinating TSC2 and regulating mammalian/mechanistic target of rapamycin (mTOR) signaling. Here, we examine the potential involvement of the TSC/mTOR complex 1(mTORC1) signaling pathway in Phr1-deficient mouse models. We observed attenuation of mTORC1 signaling in the brains of both Phr1Δ8,9 and Phr1Magellan mouse models. Our results establish that Pam regulates TSC/mTOR signaling in vitro and in vivo through two distinct domains. To further address whether Pam regulates mTORC1 through two functionally independent domains, we undertook heterozygous mutant crossing between Phr1 Δ8,9 and Phr1Magellan mice to generate a compound heterozygous model to determine whether these two domains can complement each other. mTORC1 signaling was not attenuated in the brains of double mutants (Phr1Δ8,9/Mag), confirming that Pam displays dual regulation of the mTORC1 pathway through two functional domains. Our results also suggest that although dysregulation of mTORC1 signaling may be responsible for the corpus callosum defects, other neurodevelopmental defects observed with Phr1 deficiency are independent of mTORC1 signaling. The ubiquitin ligase complex containing Pam-Fbxo45 likely targets additional synaptic and axonal proteins, which may explain the overlapping neurodevelopmental defects observed in Phr1 and Fbxo45 deficiency.

Original languageEnglish
Pages (from-to)30063-30072
Number of pages10
JournalJournal of Biological Chemistry
Volume287
Issue number36
DOIs
StatePublished - Aug 31 2012

Fingerprint

Dive into the research topics of 'The E3 ubiquitin ligase protein associated with Myc (Pam) regulates mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling in vivo through N- and C-terminal domains'. Together they form a unique fingerprint.

Cite this