TY - JOUR
T1 - The dynamic influence of human resources on evidence-based intervention sustainability and population outcomes
T2 - An agent-based modeling approach
AU - McKay, Virginia R.
AU - Hoffer, Lee D.
AU - Combs, Todd B.
AU - Margaret Dolcini, M.
N1 - Publisher Copyright:
© 2018 The Author(s).
PY - 2018/6/5
Y1 - 2018/6/5
N2 - Background: Sustaining evidence-based interventions (EBIs) is an ongoing challenge for dissemination and implementation science in public health and social services. Characterizing the relationship among human resource capacity within an agency and subsequent population outcomes is an important step to improving our understanding of how EBIs are sustained. Although human resource capacity and population outcomes are theoretically related, examining them over time within real-world experiments is difficult. Simulation approaches, especially agent-based models, offer advantages that complement existing methods. Methods: We used an agent-based model to examine the relationships among human resources, EBI delivery, and population outcomes by simulating provision of an EBI through a hypothetical agency and its staff. We used data from existing studies examining a widely implemented HIV prevention intervention to inform simulation design, calibration, and validity. Once we developed a baseline model, we used the model as a simulated laboratory by systematically varying three human resource variables: the number of staff positions, the staff turnover rate, and timing in training. We tracked the subsequent influence on EBI delivery and the level of population risk over time to describe the overall and dynamic relationships among these variables. Results: Higher overall levels of human resource capacity at an agency (more positions) led to more extensive EBI delivery over time and lowered population risk earlier in time. In simulations representing the typical human resource investments, substantial influences on population risk were visible after approximately 2 years and peaked around 4 years. Conclusions: Human resources, especially staff positions, have an important impact on EBI sustainability and ultimately population health. A minimum level of human resources based on the context (e.g., size of the initial population and characteristics of the EBI) is likely needed for an EBI to have a meaningful impact on population outcomes. Furthermore, this model demonstrates how ABMs may be leveraged to inform research design and assess the impact of EBI sustainability in practice.
AB - Background: Sustaining evidence-based interventions (EBIs) is an ongoing challenge for dissemination and implementation science in public health and social services. Characterizing the relationship among human resource capacity within an agency and subsequent population outcomes is an important step to improving our understanding of how EBIs are sustained. Although human resource capacity and population outcomes are theoretically related, examining them over time within real-world experiments is difficult. Simulation approaches, especially agent-based models, offer advantages that complement existing methods. Methods: We used an agent-based model to examine the relationships among human resources, EBI delivery, and population outcomes by simulating provision of an EBI through a hypothetical agency and its staff. We used data from existing studies examining a widely implemented HIV prevention intervention to inform simulation design, calibration, and validity. Once we developed a baseline model, we used the model as a simulated laboratory by systematically varying three human resource variables: the number of staff positions, the staff turnover rate, and timing in training. We tracked the subsequent influence on EBI delivery and the level of population risk over time to describe the overall and dynamic relationships among these variables. Results: Higher overall levels of human resource capacity at an agency (more positions) led to more extensive EBI delivery over time and lowered population risk earlier in time. In simulations representing the typical human resource investments, substantial influences on population risk were visible after approximately 2 years and peaked around 4 years. Conclusions: Human resources, especially staff positions, have an important impact on EBI sustainability and ultimately population health. A minimum level of human resources based on the context (e.g., size of the initial population and characteristics of the EBI) is likely needed for an EBI to have a meaningful impact on population outcomes. Furthermore, this model demonstrates how ABMs may be leveraged to inform research design and assess the impact of EBI sustainability in practice.
KW - Agent-based modeling
KW - Dissemination and implementation science
KW - Evidence-based intervention
KW - Human resources
KW - Organizational capacity
KW - Sustainability
KW - Systems science
UR - http://www.scopus.com/inward/record.url?scp=85048043714&partnerID=8YFLogxK
U2 - 10.1186/s13012-018-0767-0
DO - 10.1186/s13012-018-0767-0
M3 - Article
C2 - 29866135
AN - SCOPUS:85048043714
SN - 1748-5908
VL - 13
JO - Implementation Science
JF - Implementation Science
IS - 1
M1 - 77
ER -