The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA

Michele LeRoux, Sriram Srikant, Gabriella I.C. Teodoro, Tong Zhang, Megan L. Littlehale, Shany Doron, Mohsen Badiee, Anthony K.L. Leung, Rotem Sorek, Michael T. Laub

Research output: Contribution to journalArticlepeer-review

53 Scopus citations

Abstract

Toxin-antitoxin (TA) systems are broadly distributed, yet poorly conserved, genetic elements whose biological functions are unclear and controversial. Some TA systems may provide bacteria with immunity to infection by their ubiquitous viral predators, bacteriophages. To identify such TA systems, we searched bioinformatically for those frequently encoded near known phage defence genes in bacterial genomes. This search identified homologues of DarTG, a recently discovered family of TA systems whose biological functions and natural activating conditions were unclear. Representatives from two different subfamilies, DarTG1 and DarTG2, strongly protected E. coli MG1655 against different phages. We demonstrate that for each system, infection with either RB69 or T5 phage, respectively, triggers release of the DarT toxin, a DNA ADP-ribosyltransferase, that then modifies viral DNA and prevents replication, thereby blocking the production of mature virions. Further, we isolated phages that have evolved to overcome DarTG defence either through mutations to their DNA polymerase or to an anti-DarT factor, gp61.2, encoded by many T-even phages. Collectively, our results indicate that phage defence may be a common function for TA systems and reveal the mechanism by which DarTG systems inhibit phage infection.

Original languageEnglish
Pages (from-to)1028-1040
Number of pages13
JournalNature microbiology
Volume7
Issue number7
DOIs
StatePublished - Jul 2022

Fingerprint

Dive into the research topics of 'The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA'. Together they form a unique fingerprint.

Cite this