TY - JOUR
T1 - The Classification for Early-onset Scoliosis (C-EOS) Correlates with the Speed of Vertical Expandable Prosthetic Titanium Rib (VEPTR) Proximal Anchor Failure
AU - Park, Howard Y.
AU - Matsumoto, Hiroko
AU - Feinberg, Nicholas
AU - Roye, David P.
AU - Kanj, Wajdi W.
AU - Betz, Randal R.
AU - Cahill, Patrick J.
AU - Glotzbecker, Michael P.
AU - Luhmann, Scott J.
AU - Garg, Sumeet
AU - Sawyer, Jeffrey R.
AU - Smith, John T.
AU - Flynn, John M.
AU - Vitale, Michael G.
N1 - Publisher Copyright:
© 2015 Wolters Kluwer Health, Inc. All rights reserved.
PY - 2017
Y1 - 2017
N2 - Background: The Classification for Early-onset Scoliosis (C-EOS) was developed by a consortium of early-onset scoliosis (EOS) surgeons. This study aims to examine if the C-EOS classification correlates with the speed (failure/unit time) of proximal anchor failure in EOS surgery patients. Methods: A total of 106 EOS patients were retrospectively queried from an EOS database. All patients were treated with vertical expandable prosthetic titanium rib and experienced proximal anchor failure. Patients were classified by the C-EOS, which includes a term for etiology [C: Congenital (54.2%), M: Neuromuscular (32.3%), S: Syndromic (8.3%), I: Idiopathic (5.2%)], major curve angle [1: ≤20 degrees (0%), 2: 21 to 50 degrees (15.6%), 3: 51 to 90 degrees (66.7%), 4: >90 degrees (17.7%)], and kyphosis ["-": ≤20 (13.5%), "N": 21 to 50 (42.7%), "+": >50 (43.8%)]. Outcome was measured by time and number of lengthenings to failure. Results: Analyzing C-EOS classes with >3 subjects, survival analysis demonstrates that the C-EOS discriminates low, medium, and high speed of failure. The low speed of failure group consisted of congenital/51-90/hypokyphosis (C3-) class. The medium-speed group consisted of congenital/51-90/normal and hyperkyphosis (C3N, C3+), and neuromuscular/51-90/hyperkyphosis (M3+) classes. The high-speed group consisted of neuromuscular/51-90/normal kyphosis (M3N), and neuromuscular/>90/normal and hyperkyphosis (M4N, M4+) classes. Significant differences were found in time (P<0.05) and number of expansions (P<0.05) before failure between congenital and neuromuscular classes. As isolated variables, neuromuscular etiology experienced a significantly faster time to failure compared with patients with idiopathic (P<0.001) and congenital (P=0.026) etiology. Patients with a major curve angle >90 degrees demonstrated significantly faster speed of failure compared with patients with major curve angle 21 to 50 degrees (P=0.011). Conclusions: The ability of the C-EOS to discriminate the speeds of failure of the various classification subgroups supports its validity and demonstrates its potential use in guiding decision making. Further experience with the C-EOS may allow more tailored treatment, and perhaps better outcomes of patients with EOS. Level of Evidence: Level III.
AB - Background: The Classification for Early-onset Scoliosis (C-EOS) was developed by a consortium of early-onset scoliosis (EOS) surgeons. This study aims to examine if the C-EOS classification correlates with the speed (failure/unit time) of proximal anchor failure in EOS surgery patients. Methods: A total of 106 EOS patients were retrospectively queried from an EOS database. All patients were treated with vertical expandable prosthetic titanium rib and experienced proximal anchor failure. Patients were classified by the C-EOS, which includes a term for etiology [C: Congenital (54.2%), M: Neuromuscular (32.3%), S: Syndromic (8.3%), I: Idiopathic (5.2%)], major curve angle [1: ≤20 degrees (0%), 2: 21 to 50 degrees (15.6%), 3: 51 to 90 degrees (66.7%), 4: >90 degrees (17.7%)], and kyphosis ["-": ≤20 (13.5%), "N": 21 to 50 (42.7%), "+": >50 (43.8%)]. Outcome was measured by time and number of lengthenings to failure. Results: Analyzing C-EOS classes with >3 subjects, survival analysis demonstrates that the C-EOS discriminates low, medium, and high speed of failure. The low speed of failure group consisted of congenital/51-90/hypokyphosis (C3-) class. The medium-speed group consisted of congenital/51-90/normal and hyperkyphosis (C3N, C3+), and neuromuscular/51-90/hyperkyphosis (M3+) classes. The high-speed group consisted of neuromuscular/51-90/normal kyphosis (M3N), and neuromuscular/>90/normal and hyperkyphosis (M4N, M4+) classes. Significant differences were found in time (P<0.05) and number of expansions (P<0.05) before failure between congenital and neuromuscular classes. As isolated variables, neuromuscular etiology experienced a significantly faster time to failure compared with patients with idiopathic (P<0.001) and congenital (P=0.026) etiology. Patients with a major curve angle >90 degrees demonstrated significantly faster speed of failure compared with patients with major curve angle 21 to 50 degrees (P=0.011). Conclusions: The ability of the C-EOS to discriminate the speeds of failure of the various classification subgroups supports its validity and demonstrates its potential use in guiding decision making. Further experience with the C-EOS may allow more tailored treatment, and perhaps better outcomes of patients with EOS. Level of Evidence: Level III.
KW - Classification for Early-onset Scoliosis
KW - VEPTR
KW - early-onset scoliosis
KW - growing rod
KW - growth friendly surgery
KW - scoliosis
KW - vertical expandable prosthetic titanium rib
UR - http://www.scopus.com/inward/record.url?scp=84946866014&partnerID=8YFLogxK
U2 - 10.1097/BPO.0000000000000682
DO - 10.1097/BPO.0000000000000682
M3 - Article
C2 - 26566066
AN - SCOPUS:84946866014
SN - 0271-6798
VL - 37
SP - 381
EP - 386
JO - Journal of Pediatric Orthopaedics
JF - Journal of Pediatric Orthopaedics
IS - 6
ER -