TY - JOUR
T1 - The Chk1 protein kinase and the Cdc25C regulatory pathways are targets of the anticancer agent UCN-01
AU - Graves, Paul R.
AU - Yu, Lijia
AU - Schwarz, Julie K.
AU - Gales, Janis
AU - Sausville, Edward A.
AU - O'Connor, Patrick M.
AU - Piwnica-Worms, Helen
PY - 2000/2/25
Y1 - 2000/2/25
N2 - A checkpoint operating in the G2 phase of the cell cycle prevents entry into mitosis in the presence of DNA damage. UCN-01, a protein kinase inhibitor currently undergoing clinical trials for cancer treatment, abrogates G2 checkpoint function and sensitizes p53-defective cancer cells to DNA-damaging agents. In most species, the G2 checkpoint prevents the Cdc25 phosphatase from removing inhibitory phosphate groups from the mitosis- promoting kinase Cdc2. This is accomplished by maintaining Cdc25 in a phosphorylated form that binds 14-3-3 proteins. The checkpoint kinases, Chk1 and Cds1, are proposed to regulate the interactions between human Cdc25C and 14-3-3 proteins by phosphorylating Cdc25C on serine 216. 14-3-3 proteins, in turn, function to keep Cdc25C out of the nucleus. Here we report that UCN-01 caused loss of both serine 216 phosphorylation and 14-3-3 binding to Cdc25C in DNA-damaged cells. In addition, UCN-01 potently inhibited the ability of Chk1 to phosphorylate Cdc25C in vitro. In contrast, Cds1 was refractory to inhibition by UCN-01 in vitro, and Cds1 was still phosphorylated in irradiated cells treated with UCN-01. Thus, neither Cds1 nor kinases upstream of Cds1, such as ataxia telangiectasia-mutated, are targets of UCN-01 action in vivo. Taken together our results identify the Chk1 kinase and the Cdc25C pathway as potential targets of G2 checkpoint abrogation by UCN-01.
AB - A checkpoint operating in the G2 phase of the cell cycle prevents entry into mitosis in the presence of DNA damage. UCN-01, a protein kinase inhibitor currently undergoing clinical trials for cancer treatment, abrogates G2 checkpoint function and sensitizes p53-defective cancer cells to DNA-damaging agents. In most species, the G2 checkpoint prevents the Cdc25 phosphatase from removing inhibitory phosphate groups from the mitosis- promoting kinase Cdc2. This is accomplished by maintaining Cdc25 in a phosphorylated form that binds 14-3-3 proteins. The checkpoint kinases, Chk1 and Cds1, are proposed to regulate the interactions between human Cdc25C and 14-3-3 proteins by phosphorylating Cdc25C on serine 216. 14-3-3 proteins, in turn, function to keep Cdc25C out of the nucleus. Here we report that UCN-01 caused loss of both serine 216 phosphorylation and 14-3-3 binding to Cdc25C in DNA-damaged cells. In addition, UCN-01 potently inhibited the ability of Chk1 to phosphorylate Cdc25C in vitro. In contrast, Cds1 was refractory to inhibition by UCN-01 in vitro, and Cds1 was still phosphorylated in irradiated cells treated with UCN-01. Thus, neither Cds1 nor kinases upstream of Cds1, such as ataxia telangiectasia-mutated, are targets of UCN-01 action in vivo. Taken together our results identify the Chk1 kinase and the Cdc25C pathway as potential targets of G2 checkpoint abrogation by UCN-01.
UR - http://www.scopus.com/inward/record.url?scp=0034053130&partnerID=8YFLogxK
U2 - 10.1074/jbc.275.8.5600
DO - 10.1074/jbc.275.8.5600
M3 - Article
C2 - 10681541
AN - SCOPUS:0034053130
SN - 0021-9258
VL - 275
SP - 5600
EP - 5605
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 8
ER -