TY - JOUR
T1 - The Angiosarcoma Project
T2 - enabling genomic and clinical discoveries in a rare cancer through patient-partnered research
AU - Painter, Corrie A.
AU - Jain, Esha
AU - Tomson, Brett N.
AU - Dunphy, Michael
AU - Stoddard, Rachel E.
AU - Thomas, Beena S.
AU - Damon, Alyssa L.
AU - Shah, Shahrayz
AU - Kim, Dewey
AU - Gómez Tejeda Zañudo, Jorge
AU - Hornick, Jason L.
AU - Chen, Yen Lin
AU - Merriam, Priscilla
AU - Raut, Chandrajit P.
AU - Demetri, George D.
AU - Van Tine, Brian A.
AU - Lander, Eric S.
AU - Golub, Todd R.
AU - Wagle, Nikhil
N1 - Funding Information:
We thank the many patients with angiosarcoma and loved ones of patients who have generously partnered with us to create and drive this research project; we are grateful to work with you every day. We thank the ASCproject advocacy partners (Angiosarcoma Awareness, The Paula Takacs Foundation for Sarcoma Research, Sarcoma Alliance for Research through Collaboration, Sarcoma Alliance, Sarcoma Foundation of America, The Sarcoma Coalition, and Target Cancer Foundation). We thank K. Shanahan for her assistance with medical record abstraction. We thank colleagues from across the Broad Institute and Dana Farber for helpful scientific discussions and support. We thank W. Hahn for helpful feedback on the manuscript. We thank the Broad Institute Communications & Development teams for their hard work to support this project. We are especially thankful to all members of the Count Me In team, the Wagle laboratory, the engineering team at the Broad Institute (A. Zimmer, E. Baker, S. Maiwald, J. Lapan, S. Sutherland), the Broad Institute Cancer Program, the Broad Institute Genomics Platform, and the compliance team at the Broad Institute. This research was supported by anonymous philanthropic support to the Broad Institute.
Publisher Copyright:
© 2020, The Author(s), under exclusive licence to Springer Nature America, Inc.
PY - 2020/2/1
Y1 - 2020/2/1
N2 - Despite rare cancers accounting for 25% of adult tumors1, they are difficult to study due to the low disease incidence and geographically dispersed patient populations, which has resulted in significant unmet clinical needs for patients with rare cancers. We assessed whether a patient-partnered research approach using online engagement can overcome these challenges, focusing on angiosarcoma, a sarcoma with an annual incidence of 300 cases in the United States. Here we describe the development of the Angiosarcoma Project (ASCproject), an initiative enabling US and Canadian patients to remotely share their clinical information and biospecimens for research. The project generates and publicly releases clinically annotated genomic data on tumor and germline specimens on an ongoing basis. Over 18 months, 338 patients registered for the ASCproject, which comprises a large proportion of all patients with angiosarcoma. Whole-exome sequencing (WES) of 47 tumors revealed recurrently mutated genes that included KDR, TP53, and PIK3CA. PIK3CA-activating mutations were observed predominantly in primary breast angiosarcoma, which suggested a therapeutic rationale. Angiosarcoma of the head, neck, face and scalp (HNFS) was associated with a high tumor mutation burden (TMB) and a dominant ultraviolet damage mutational signature, which suggested that for the subset of patients with angiosarcoma of HNFS, ultraviolet damage may be a causative factor and that immune checkpoint inhibition may be beneficial. Medical record review revealed that two patients with HNFS angiosarcoma had received off-label therapeutic use of antibody to the programmed death-1 protein (anti-PD-1) and had experienced exceptional responses, which highlights immune checkpoint inhibition as a therapeutic avenue for HNFS angiosarcoma. This patient-partnered approach has catalyzed an opportunity to discover the etiology and potential therapies for patients with angiosarcoma. Collectively, this proof-of-concept study demonstrates that empowering patients to directly participate in research can overcome barriers in rare diseases and can enable discoveries.
AB - Despite rare cancers accounting for 25% of adult tumors1, they are difficult to study due to the low disease incidence and geographically dispersed patient populations, which has resulted in significant unmet clinical needs for patients with rare cancers. We assessed whether a patient-partnered research approach using online engagement can overcome these challenges, focusing on angiosarcoma, a sarcoma with an annual incidence of 300 cases in the United States. Here we describe the development of the Angiosarcoma Project (ASCproject), an initiative enabling US and Canadian patients to remotely share their clinical information and biospecimens for research. The project generates and publicly releases clinically annotated genomic data on tumor and germline specimens on an ongoing basis. Over 18 months, 338 patients registered for the ASCproject, which comprises a large proportion of all patients with angiosarcoma. Whole-exome sequencing (WES) of 47 tumors revealed recurrently mutated genes that included KDR, TP53, and PIK3CA. PIK3CA-activating mutations were observed predominantly in primary breast angiosarcoma, which suggested a therapeutic rationale. Angiosarcoma of the head, neck, face and scalp (HNFS) was associated with a high tumor mutation burden (TMB) and a dominant ultraviolet damage mutational signature, which suggested that for the subset of patients with angiosarcoma of HNFS, ultraviolet damage may be a causative factor and that immune checkpoint inhibition may be beneficial. Medical record review revealed that two patients with HNFS angiosarcoma had received off-label therapeutic use of antibody to the programmed death-1 protein (anti-PD-1) and had experienced exceptional responses, which highlights immune checkpoint inhibition as a therapeutic avenue for HNFS angiosarcoma. This patient-partnered approach has catalyzed an opportunity to discover the etiology and potential therapies for patients with angiosarcoma. Collectively, this proof-of-concept study demonstrates that empowering patients to directly participate in research can overcome barriers in rare diseases and can enable discoveries.
UR - http://www.scopus.com/inward/record.url?scp=85079318750&partnerID=8YFLogxK
U2 - 10.1038/s41591-019-0749-z
DO - 10.1038/s41591-019-0749-z
M3 - Letter
C2 - 32042194
AN - SCOPUS:85079318750
SN - 1078-8956
VL - 26
SP - 181
EP - 187
JO - Nature Medicine
JF - Nature Medicine
IS - 2
ER -