The Advanced Particle-astrophysics Telescope (APT) Project Status

the APT Collaboration

Research output: Contribution to journalConference articlepeer-review

6 Scopus citations


We describe the development of a future gamma-ray/cosmic-ray mission called the Advanced Particle-astrophysics Telescope (APT). The instrument will combine a pair tracker and Compton telescope in a single monolithic design. By using scintillating fibers for the tracker and wavelength-shifting fibers to readout CsI detectors, the instrument will achieve an order of magnitude improvement in sensitivity compared with Fermi but with fewer readout channels, and lower complexity. By incorporating multiple Compton imaging over a very large effective area, the instrument will also achieve orders of magnitude improvement in MeV sensitivity compared with other proposed instruments. The mission would have a broad impact on astroparticle physics, but the primary science drivers for the mission include: (1) probing WIMP dark matter across the entire natural mass range and annihilation cross section for a thermal WIMP, (2) providing a nearly all-sky instantaneous FoV, with prompt sub-degree localization and polarization measurements for gamma-ray transients such as neutron-star mergers and (3) making measurements of rare utraheavy cosmic ray nuclei to distinguish between n-star merger and SNae r-process synthesis of the heavy elements. We will describe ongoing work including a series of accelerator beam tests, a piggy-back Antactic flight (APTlite) and the recently funded long-duration balloon mission: the Antarctic Demonstrator for APT (ADAPT).

Original languageEnglish
Article number655
JournalProceedings of Science
StatePublished - Mar 18 2022
Event37th International Cosmic Ray Conference, ICRC 2021 - Virtual, Berlin, Germany
Duration: Jul 12 2021Jul 23 2021


Dive into the research topics of 'The Advanced Particle-astrophysics Telescope (APT) Project Status'. Together they form a unique fingerprint.

Cite this