TY - JOUR
T1 - Teriparatide therapy and beta-tricalcium phosphate enhance scaffold reconstruction of mouse femoral defects
AU - Jacobson, Justin A.
AU - Yanoso-Scholl, Laura
AU - Reynolds, David G.
AU - Dadali, Tulin
AU - Bradica, Gino
AU - Bukata, Susan
AU - Puzas, Edward J.
AU - Zuscik, Michael J.
AU - Rosier, Randy
AU - O'Keefe, Regis J.
AU - Schwarz, Edward M.
AU - Awad, Hani A.
PY - 2011/2/1
Y1 - 2011/2/1
N2 - To investigate the efficacy of endocrine parathyroid hormone treatment on tissue-engineered bone regeneration, massive femoral defects in C57Bl/6 mice were reconstructed with either 100:0 or 85:15 poly-lactic acid (PLA)/beta-tricalcium phosphate (β-TCP) scaffolds (hereafter PLA or PLA/βTCP, respectively), which were fabricated with low porosity (<30%) to improve their structural rigidity. Experimental mice were treated starting at 1 week postop with daily subcutaneous injections of 40μg/kg teriparatide until sacrifice at 9 weeks, whereas control mice underwent the same procedure but were injected with sterile saline. Bone regeneration was assessed longitudinally using planar X-ray and quantitative microcomputed tomography, and the reconstructed femurs were evaluated at 9 weeks either histologically or biomechanically to determine their torsional strength and rigidity. Teriparatide treatment increased bone volume and bone mineral content significantly at 6 weeks and led to enhanced trabeculated bone callus formation that appeared to surround and integrate with the scaffold, thereby establishing union by bridging bone regeneration across the segmental defect in 30% of the reconstructed femurs, regardless of the scaffold type. However, the bone volume and mineral content in the PLA reconstructed femurs treated with teriparatide was reduced at 9 weeks to control levels, but remained significantly increased in the PLA/βTCP scaffolds. Further, bridged teriparatide-treated femurs demonstrated a prototypical brittle bone torsion behavior, and were significantly stronger and stiffer than control specimens or treated specimens that failed to form bridging bone union. Taken together, these observations suggest that intermittent, systemic parathyroid hormone treatment can enhance bone regeneration in scaffold-reconstructed femoral defects, which can be further enhanced by mineralized (βTCP) particles within the scaffold.
AB - To investigate the efficacy of endocrine parathyroid hormone treatment on tissue-engineered bone regeneration, massive femoral defects in C57Bl/6 mice were reconstructed with either 100:0 or 85:15 poly-lactic acid (PLA)/beta-tricalcium phosphate (β-TCP) scaffolds (hereafter PLA or PLA/βTCP, respectively), which were fabricated with low porosity (<30%) to improve their structural rigidity. Experimental mice were treated starting at 1 week postop with daily subcutaneous injections of 40μg/kg teriparatide until sacrifice at 9 weeks, whereas control mice underwent the same procedure but were injected with sterile saline. Bone regeneration was assessed longitudinally using planar X-ray and quantitative microcomputed tomography, and the reconstructed femurs were evaluated at 9 weeks either histologically or biomechanically to determine their torsional strength and rigidity. Teriparatide treatment increased bone volume and bone mineral content significantly at 6 weeks and led to enhanced trabeculated bone callus formation that appeared to surround and integrate with the scaffold, thereby establishing union by bridging bone regeneration across the segmental defect in 30% of the reconstructed femurs, regardless of the scaffold type. However, the bone volume and mineral content in the PLA reconstructed femurs treated with teriparatide was reduced at 9 weeks to control levels, but remained significantly increased in the PLA/βTCP scaffolds. Further, bridged teriparatide-treated femurs demonstrated a prototypical brittle bone torsion behavior, and were significantly stronger and stiffer than control specimens or treated specimens that failed to form bridging bone union. Taken together, these observations suggest that intermittent, systemic parathyroid hormone treatment can enhance bone regeneration in scaffold-reconstructed femoral defects, which can be further enhanced by mineralized (βTCP) particles within the scaffold.
UR - http://www.scopus.com/inward/record.url?scp=79551551965&partnerID=8YFLogxK
U2 - 10.1089/ten.tea.2010.0115
DO - 10.1089/ten.tea.2010.0115
M3 - Article
C2 - 20807012
AN - SCOPUS:79551551965
SN - 1937-3341
VL - 17
SP - 389
EP - 398
JO - Tissue Engineering - Part A
JF - Tissue Engineering - Part A
IS - 3-4
ER -