TY - JOUR
T1 - Technical note
T2 - On the accuracy of parametric two-parameter photon cross-section models in dual-energy CT applications
AU - Han, Dong
AU - Porras-Chaverri, Mariela A.
AU - O'Sullivan, Joseph A.
AU - Politte, David G.
AU - Williamson, Jeffrey F.
N1 - Publisher Copyright:
© 2017 American Association of Physicists in Medicine.
PY - 2017/6/1
Y1 - 2017/6/1
N2 - Purpose: To evaluate and compare the theoretically achievable accuracy of two families of two-parameter photon cross-sectionmodels: basis vectormodel (BVM) andmodified parametric fitmodel (mPFM). Method: The modified PFM assumes that photoelectric absorption and scattering cross-sections can be accurately represented by power functions in effective atomic number and/or energy plus the Klein-Nishina cross-section, along with empirical corrections that enforce exact prediction of elemental cross-sections. Two mPFM variants were investigated: the widely used Torikoshi model (tPFM) and a more complex "VCU" variant (vPFM). For 43 standard soft and bony tissues and phantom materials, all consisting of elements with atomic number less than 20 (except iodine), we evaluated the theoretically achievable accuracy of tPFM and vPFM for predicting linear attenuation, photoelectric absorption, and energy-absorption coefficients, and we compared it to a previously investigated separable, linear two-parameter model, BVM. Results: For an idealized dual-energy computed tomography (DECT) imaging scenario, the cross-section mapping process demonstrates that BVM more accurately predicts photon cross-sections of biological mixtures than either tPFM or vPFM. Maximum linear attenuation coefficient prediction errors were 15% and 5% for tPFM and BVM, respectively. The root-mean-square (RMS) prediction errors of total linear attenuation over the 20 keV to 1000 keV energy range of tPFM and BVM were 0.93% (tPFM) and 0.1% (BVM) for adipose tissue, 0.8% (tPFM) and 0.2% (BVM) for muscle tissue, and 1.6% (tPFM) and 0.2% (BVM) for cortical bone tissue. With exception of the thyroid and Teflon, the RMS error for photoelectric absorption and scattering coefficient was within 4% for the tPFM and 2% for the BVM. Neither model predicts the photon cross-sections of thyroid tissue accurately, exhibiting relative errors as large as 20%. For the energy-absorption coefficients prediction error, RMS errors for the BVM were less than 1.5%, while for the tPFM, the RMS errors were as large as 16%. Conclusion: Compared to modified PFMs, BVM shows superior potential to support dual-energy CT cross-section mapping. In addition, the linear, separable BVM can be more efficiently deployed by iterative model-based DECT image-reconstruction algorithms.
AB - Purpose: To evaluate and compare the theoretically achievable accuracy of two families of two-parameter photon cross-sectionmodels: basis vectormodel (BVM) andmodified parametric fitmodel (mPFM). Method: The modified PFM assumes that photoelectric absorption and scattering cross-sections can be accurately represented by power functions in effective atomic number and/or energy plus the Klein-Nishina cross-section, along with empirical corrections that enforce exact prediction of elemental cross-sections. Two mPFM variants were investigated: the widely used Torikoshi model (tPFM) and a more complex "VCU" variant (vPFM). For 43 standard soft and bony tissues and phantom materials, all consisting of elements with atomic number less than 20 (except iodine), we evaluated the theoretically achievable accuracy of tPFM and vPFM for predicting linear attenuation, photoelectric absorption, and energy-absorption coefficients, and we compared it to a previously investigated separable, linear two-parameter model, BVM. Results: For an idealized dual-energy computed tomography (DECT) imaging scenario, the cross-section mapping process demonstrates that BVM more accurately predicts photon cross-sections of biological mixtures than either tPFM or vPFM. Maximum linear attenuation coefficient prediction errors were 15% and 5% for tPFM and BVM, respectively. The root-mean-square (RMS) prediction errors of total linear attenuation over the 20 keV to 1000 keV energy range of tPFM and BVM were 0.93% (tPFM) and 0.1% (BVM) for adipose tissue, 0.8% (tPFM) and 0.2% (BVM) for muscle tissue, and 1.6% (tPFM) and 0.2% (BVM) for cortical bone tissue. With exception of the thyroid and Teflon, the RMS error for photoelectric absorption and scattering coefficient was within 4% for the tPFM and 2% for the BVM. Neither model predicts the photon cross-sections of thyroid tissue accurately, exhibiting relative errors as large as 20%. For the energy-absorption coefficients prediction error, RMS errors for the BVM were less than 1.5%, while for the tPFM, the RMS errors were as large as 16%. Conclusion: Compared to modified PFMs, BVM shows superior potential to support dual-energy CT cross-section mapping. In addition, the linear, separable BVM can be more efficiently deployed by iterative model-based DECT image-reconstruction algorithms.
KW - Computed tomography
KW - Dual-energy
KW - Photon cross-section
UR - http://www.scopus.com/inward/record.url?scp=85024488435&partnerID=8YFLogxK
U2 - 10.1002/mp.12220
DO - 10.1002/mp.12220
M3 - Article
C2 - 28295418
AN - SCOPUS:85024488435
SN - 0094-2405
VL - 44
SP - 2438
EP - 2446
JO - Medical physics
JF - Medical physics
IS - 6
ER -