TY - JOUR
T1 - Targeting primary and metastatic uveal melanoma with a G protein inhibitor
AU - Onken, Michael D.
AU - Makepeace, Carol M.
AU - Kaltenbronn, Kevin M.
AU - Choi, Joelle
AU - Hernandez-Aya, Leonel
AU - Weilbaecher, Katherine N.
AU - Piggott, Kisha D.
AU - Kumar Rao, P.
AU - Yuede, Carla M.
AU - Dixon6, Alethia J.
AU - Osei-Owusu, Patrick
AU - Cooper, John A.
AU - Blumer, Kendall J.
N1 - Publisher Copyright:
© 2021 American Society for Biochemistry and Molecular Biology Inc.. All rights reserved.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Uveal melanoma (UM) is the most common intraocular tumor in adults. Nearly half of UM patients develop metastatic disease and often succumb within months because effective therapy is lacking. A novel therapeutic approach has been suggested by the discovery that UM cell lines driven by mutant constitutively active Gq or G11 can be targeted by FR900359 (FR) or YM-254890, which are bioavailable, selective inhibitors of the Gq/11/14 subfamily of heterotrimeric G proteins. Here, we have addressed the therapeutic potential of FR for UM. We found that FR inhibited all oncogenic Gq/11 mutants reported in UM. FR arrested growth of all Gq/11-driven UM cell lines tested, but induced apoptosis only in a few. Similarly, FR inhibited growth of, but did not efficiently kill, UM tumor cells from biopsies of primary or metastatic tumors. FR evoked melanocytic redifferentiation of UM tumor cells with low (class 1), but not high (class 2), metastatic potential. FR administered systemically below its LD50 strongly inhibited growth of PDX-derived class 1 and class 2 UM tumors in mouse xenograft models and reduced blood pressure transiently. FR did not regress xenografted UM tumors or significantly affect heart rate, liver function, hematopoiesis, or behavior. These results indicated the existence of a therapeutic window in which FR can be explored for treating UM and potentially other diseases caused by constitutively active Gq/11.
AB - Uveal melanoma (UM) is the most common intraocular tumor in adults. Nearly half of UM patients develop metastatic disease and often succumb within months because effective therapy is lacking. A novel therapeutic approach has been suggested by the discovery that UM cell lines driven by mutant constitutively active Gq or G11 can be targeted by FR900359 (FR) or YM-254890, which are bioavailable, selective inhibitors of the Gq/11/14 subfamily of heterotrimeric G proteins. Here, we have addressed the therapeutic potential of FR for UM. We found that FR inhibited all oncogenic Gq/11 mutants reported in UM. FR arrested growth of all Gq/11-driven UM cell lines tested, but induced apoptosis only in a few. Similarly, FR inhibited growth of, but did not efficiently kill, UM tumor cells from biopsies of primary or metastatic tumors. FR evoked melanocytic redifferentiation of UM tumor cells with low (class 1), but not high (class 2), metastatic potential. FR administered systemically below its LD50 strongly inhibited growth of PDX-derived class 1 and class 2 UM tumors in mouse xenograft models and reduced blood pressure transiently. FR did not regress xenografted UM tumors or significantly affect heart rate, liver function, hematopoiesis, or behavior. These results indicated the existence of a therapeutic window in which FR can be explored for treating UM and potentially other diseases caused by constitutively active Gq/11.
UR - http://www.scopus.com/inward/record.url?scp=85102895295&partnerID=8YFLogxK
U2 - 10.1016/j.jbc.2021.100403
DO - 10.1016/j.jbc.2021.100403
M3 - Review article
C2 - 33577798
AN - SCOPUS:85102895295
SN - 0021-9258
VL - 296
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
M1 - 100403
ER -