Targeting normal and neoplastic tissues in the rat jejunum and colon with boronated, cationic acrylamide copolymers

Abdel Kareem Azab, Morris Srebnik, Victoria Doviner, Abraham Rubinstein

Research output: Contribution to journalArticlepeer-review

30 Scopus citations

Abstract

A series of boronated cationic copolymers, composed of different ratios of acrylamide, N-acryloyl-3-aminophenylboronic acid and N-acryloyl-diaminoethane (the cationic moiety), were prepared with the intention of localizing boron neutron capture therapy (BNCT) in experimentally induced polyps on the luminal side of the gut of the rat. The goals of this study were to: (a) test the effect of cationization of the boronated copolymers on their uptake by polyps and normal adjacent epithelium; (b) compare the whole rat body distribution of aminophenylboronic acid (APB) and polymeric APB after local application; (c) measure the effect of micro-environmental parameters such as pH, the presence of mucin and cations on the interaction between the APB-copolymers and the epithelium of the rat intestines. Direct analysis of tissue boron levels showed that polymeric APB-uptake was higher in the colonic polyps than in the surrounding normal tissues. Free APB, however, was found in similar quantities in both. When tested in the normal jejunum and colon of the rat, polymeric APB uptake was directly proportional to the molar content of the cationic monomer in the copolymers. The presence of magnesium ions, free boron cationic monomer and mucin interfered with this uptake in a concentration-dependent manner. The uptake was pH-independent at pH 5, 7 and 10. APB accumulation in the colon polyps was inversely proportional to the cationic monomer content in the copolymers, suggesting an increased amount of mucus around the polyps, which probably impeded the electrostatic attachment of the polymer to the malignant tissue. The use polymeric APB for targeting BNCT in perioperative treatment of colorectal carcinoma is suggested, especially in the cases of microscopic residual disease after curative resection.

Original languageEnglish
Pages (from-to)14-25
Number of pages12
JournalJournal of Controlled Release
Volume106
Issue number1-2
DOIs
StatePublished - Aug 18 2005

Keywords

  • Acrylamide polymer
  • Boron neutron capture therapy
  • Colorectal cancer

Fingerprint

Dive into the research topics of 'Targeting normal and neoplastic tissues in the rat jejunum and colon with boronated, cationic acrylamide copolymers'. Together they form a unique fingerprint.

Cite this