Targeted integration in rat and mouse embryos with zinc-finger nucleases

Xiaoxia Cui, Diana Ji, Daniel A. Fisher, Yumei Wu, David M. Briner, Edward J. Weinstein

Research output: Contribution to journalArticle

255 Scopus citations

Abstract

Gene targeting is indispensible for reverse genetics and the generation of animal models of disease. The mouse has become the most commonly used animal model system owing to the success of embryonic stem cell-based targeting technology, whereas other mammalian species lack convenient tools for genome modification. Recently, microinjection of engineered zinc-finger nucleases (ZFNs) in embryos was used to generate gene knockouts in the rat and the mouse by introducing nonhomologous end joining (NHEJ)-mediated deletions or insertions at the target site. Here we use ZFN technology in embryos to introduce sequence-specific modifications (knock-ins) by means of homologous recombination in Sprague Dawley and Long-Evans hooded rats and FVB mice. This approach enables precise genome engineering to generate modifications such as point mutations, accurate insertions and deletions, and conditional knockouts and knock-ins. The same strategy can potentially be applied to many other species for which genetic engineering tools are needed.

Original languageEnglish
Pages (from-to)64-68
Number of pages5
JournalNature Biotechnology
Volume29
Issue number1
DOIs
StatePublished - Jan 1 2011
Externally publishedYes

Fingerprint Dive into the research topics of 'Targeted integration in rat and mouse embryos with zinc-finger nucleases'. Together they form a unique fingerprint.

  • Cite this

    Cui, X., Ji, D., Fisher, D. A., Wu, Y., Briner, D. M., & Weinstein, E. J. (2011). Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nature Biotechnology, 29(1), 64-68. https://doi.org/10.1038/nbt.1731