TY - GEN
T1 - Synthesizing network dynamics for short-term memory of impulsive inputs
AU - Jones, Beth Anna
AU - Ching, Shi Nung
N1 - Funding Information:
This work was partially supported by grants DGE-1745038, DGE-2139839, and CMMI-1653589 from the US National Science Foundation, grant R01EB028154 from the US National Institutes of Health, and grant W911NF2110312 from the US Department of Defense.
Publisher Copyright:
© 2022 IEEE.
PY - 2022
Y1 - 2022
N2 - Illuminating the mechanisms that the brain uses to manage and coordinate its resources is a core question in neuroscience. In particular, circuits and networks in the brain are able to encode, store and recall large amounts of information, in the service of a wide range of functionality. How do the various dynamical mechanisms within these networks allow for such coordination? We consider the specific problem of how the dynamics of networks can enact a representation of input stimuli that is retained over time, i.e., a form of short-term memory. We utilize modeling and control-theoretic methods to approach these questions, treating the state trajectory of a dynamical system as an abstract memory trace of prior inputs. The inputs impinge on the network via a variable gain, which is to be synthesized by optimization. In order to perpetuate these memory traces of stimuli, we propose that this gain is adapted to optimize: i) the error between a ground truth representation of stimuli and the encoding of them; as well as ii) overwriting of prior information. Optimizing over these central tenets of memory, we obtain a 'policy' for adapting the input gain that is dependent on the state of the network. This derived policy yields a recurrent neural network between the policy and the neural circuits, affirming existing theories that the prefrontal cortex may hold subnetworks dedicated to working memory while actively engaging with other neural subnetworks.
AB - Illuminating the mechanisms that the brain uses to manage and coordinate its resources is a core question in neuroscience. In particular, circuits and networks in the brain are able to encode, store and recall large amounts of information, in the service of a wide range of functionality. How do the various dynamical mechanisms within these networks allow for such coordination? We consider the specific problem of how the dynamics of networks can enact a representation of input stimuli that is retained over time, i.e., a form of short-term memory. We utilize modeling and control-theoretic methods to approach these questions, treating the state trajectory of a dynamical system as an abstract memory trace of prior inputs. The inputs impinge on the network via a variable gain, which is to be synthesized by optimization. In order to perpetuate these memory traces of stimuli, we propose that this gain is adapted to optimize: i) the error between a ground truth representation of stimuli and the encoding of them; as well as ii) overwriting of prior information. Optimizing over these central tenets of memory, we obtain a 'policy' for adapting the input gain that is dependent on the state of the network. This derived policy yields a recurrent neural network between the policy and the neural circuits, affirming existing theories that the prefrontal cortex may hold subnetworks dedicated to working memory while actively engaging with other neural subnetworks.
UR - http://www.scopus.com/inward/record.url?scp=85147014059&partnerID=8YFLogxK
U2 - 10.1109/CDC51059.2022.9993238
DO - 10.1109/CDC51059.2022.9993238
M3 - Conference contribution
AN - SCOPUS:85147014059
T3 - Proceedings of the IEEE Conference on Decision and Control
SP - 6836
EP - 6841
BT - 2022 IEEE 61st Conference on Decision and Control, CDC 2022
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 61st IEEE Conference on Decision and Control, CDC 2022
Y2 - 6 December 2022 through 9 December 2022
ER -