Surveying the nuclear caloric curve

Y. G. Ma, A. Siwek, J. Péter, F. Gulminelli, R. Dayras, L. Nalpas, B. Tamain, E. Vient, G. Auger, Ch O. Bacri, J. Benlliure, E. Bisquer, B. Borderie, R. Bougault, R. Brou, J. L. Charvet, A. Chbihi, J. Colin, D. Cussol, E. De FilippoA. Demeyer, D. Doré, D. Durand, P. Ecomard, P. Eudes, E. Gerlic, D. Gourio, D. Guinet, R. Laforest, P. Lautesse, J. L. Laville, L. Lebreton, J. F. Lecolley, A. Le Fèvre, T. Lefort, R. Legrain, O. Lopez, M. Louvel, J. Łukasik, N. Marie, V. Métivier, A. Ouatizerga, M. Parlog, E. Plagnol, A. Rahmani, T. Reposeur, M. F. Rivet, E. Rosato, F. Saint-Laurent, M. Squalli, J. C. Steckmeyer, M. Stern, L. Tassan-Got, C. Volant, J. P. Wieleczko

Research output: Contribution to journalArticlepeer-review

150 Scopus citations


The 4π array INDRA was used to detect nearly all charged products emitted in Ar + Ni collisions between 52 and 95 MeV/u. The charge, mass and excitation energy E* of the quasi-projectiles have been reconstructed event by event. Excitation energies up to 25 MeV per nucleon are reached. Apparent temperatures obtained from several double isotopic yield ratios Tr0 show different dependences upon E* . T06Li7Li-3Heα yields the highest values, as well as the high energy slopes Ts of the kinetic energy spectra. Two statistical models, sequential evaporation and gas in complete equilibrium, taking into account side feeding and discrete excited states population, show that the data can be explained by a steady increase of the initial temperature with excitation energy without evidence for a liquid-gas phase transition.

Original languageEnglish
Pages (from-to)41-48
Number of pages8
JournalPhysics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics
Issue number1-4
StatePublished - Jan 2 1997


Dive into the research topics of 'Surveying the nuclear caloric curve'. Together they form a unique fingerprint.

Cite this