TY - JOUR
T1 - 64Cu-TETA-octreotide as a PET imaging agent for patients with neuroendocrine tumors
AU - Anderson, C. J.
AU - Dehdashti, F.
AU - Cutler, P. D.
AU - Schwarz, S. W.
AU - Laforest, R.
AU - Bass, L. A.
AU - Lewis, J. S.
AU - McCarthy, D. W.
PY - 2001
Y1 - 2001
N2 - 64Cu (half-life, 12.7 h; β+, 0.653 MeV [17.4%]; β-, 0.579 MeV [39%]) has shown potential as a radioisotope for PET imaging and radiotherapy. 111ln-diethylenetriaminepentaacetic acid (DTPA)-D-Phe1-octreotide (OC) was developed for imaging somatostatin-receptor-positive tumors using conventional scintigraphy. With the advantages of PET over conventional scintigraphy, an agent for PET imaging of these tumors is desirable. Here, we show that 64Cu-TETA-OC (where TETA is 1,4,8,11-tetraazacyclotetradecane-N,N′,N″,N‴-tetraacetic acid) and PET can be used to detect somatostatin-receptor-positive tumors in humans. Methods: Eight patients with a history of neuroendocrine tumors (five patients with carcinoid tumors and three patients with islet cell tumors) were imaged by conventional scintigraphy with 111In-DTPA-OC (204-233 MBq [5.5- 6.3 mCi]) and by PET imaging with 64Cu-TETA-OC (111 MBq [3 mCi]). Blood and urine samples were collected for pharmacokinetic analysis. PET images were collected at times ranging from 0 to 36 h after injection, and the absorbed doses to normal organs were determined. Results: In six of the eight patients, cancerous lesions were visible by both 111In-DTPA-OC SPECT and 64Cu-TETA-OC PET. In one patient, 111In-DTPA-OC showed mild uptake in a lung lesion that was not detected by 64Cu-TETA-OC PET. In one patient, no tumors were detected by either agent; however, pathologic follow-up indicated that the patient had no tumors. In two patients whose tumors were visualized with 111In-DTPA-OC and 64Cu-TETA-OC, 64Cu-TETA-OC and PET showed more lesions than 111In-DTPA-OC. Pharmacokinetic studies showed that 64Cu-TETA-OC was rapidly cleared from the blood and that 59.2% ± 17.6% of the injected dose was excreted in the urine. Absorbed dose measurements indicated that the bladder wall was the dose-limiting organ. Conclusion: The high rate of lesion detection, sensitivity, and favorable dosimetry and pharmacokinetics of 64Cu-TETA-OC indicate that it is a promising radiopharmaceutical for PET imaging of patients with neuroendocrine tumors.
AB - 64Cu (half-life, 12.7 h; β+, 0.653 MeV [17.4%]; β-, 0.579 MeV [39%]) has shown potential as a radioisotope for PET imaging and radiotherapy. 111ln-diethylenetriaminepentaacetic acid (DTPA)-D-Phe1-octreotide (OC) was developed for imaging somatostatin-receptor-positive tumors using conventional scintigraphy. With the advantages of PET over conventional scintigraphy, an agent for PET imaging of these tumors is desirable. Here, we show that 64Cu-TETA-OC (where TETA is 1,4,8,11-tetraazacyclotetradecane-N,N′,N″,N‴-tetraacetic acid) and PET can be used to detect somatostatin-receptor-positive tumors in humans. Methods: Eight patients with a history of neuroendocrine tumors (five patients with carcinoid tumors and three patients with islet cell tumors) were imaged by conventional scintigraphy with 111In-DTPA-OC (204-233 MBq [5.5- 6.3 mCi]) and by PET imaging with 64Cu-TETA-OC (111 MBq [3 mCi]). Blood and urine samples were collected for pharmacokinetic analysis. PET images were collected at times ranging from 0 to 36 h after injection, and the absorbed doses to normal organs were determined. Results: In six of the eight patients, cancerous lesions were visible by both 111In-DTPA-OC SPECT and 64Cu-TETA-OC PET. In one patient, 111In-DTPA-OC showed mild uptake in a lung lesion that was not detected by 64Cu-TETA-OC PET. In one patient, no tumors were detected by either agent; however, pathologic follow-up indicated that the patient had no tumors. In two patients whose tumors were visualized with 111In-DTPA-OC and 64Cu-TETA-OC, 64Cu-TETA-OC and PET showed more lesions than 111In-DTPA-OC. Pharmacokinetic studies showed that 64Cu-TETA-OC was rapidly cleared from the blood and that 59.2% ± 17.6% of the injected dose was excreted in the urine. Absorbed dose measurements indicated that the bladder wall was the dose-limiting organ. Conclusion: The high rate of lesion detection, sensitivity, and favorable dosimetry and pharmacokinetics of 64Cu-TETA-OC indicate that it is a promising radiopharmaceutical for PET imaging of patients with neuroendocrine tumors.
KW - Cu
KW - In
KW - Octreotide
KW - PET
UR - http://www.scopus.com/inward/record.url?scp=0034746145&partnerID=8YFLogxK
M3 - Article
C2 - 11216519
AN - SCOPUS:0034746145
SN - 0161-5505
VL - 42
SP - 213
EP - 221
JO - Journal of Nuclear Medicine
JF - Journal of Nuclear Medicine
IS - 2
ER -