Background Mutations in the gene encoding the transcription factor forkhead box P2 (FOXP2) result in brain developmental abnormalities, including reduced gray matter in both human patients and rodent models and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any posttranslational modifications of FOXP2 in the brain and disorders have been explored. Methods We characterized sumoylation of FOXP2 biochemically and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation state of FOXP2 as well as Foxp2 expression levels in Purkinje cells of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. Results We identified sumoylation of FOXP2 at K674 (K673 in mice) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the small ubiquitin-like modifier E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrated that FOXP2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of Purkinje cells in the mouse cerebellum. Conclusions Sumoylation of FOXP2 in neonatal mouse cerebellum regulates Purkinje cell development and motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors.

Original languageEnglish
Pages (from-to)220-230
Number of pages11
JournalBiological Psychiatry
Issue number3
StatePublished - Feb 1 2017


  • Cerebellum
  • FOXP2
  • Motor function
  • Purkinje cells
  • Sumoylation
  • Vocal communication


Dive into the research topics of 'Sumoylation of FOXP2 Regulates Motor Function and Vocal Communication Through Purkinje Cell Development'. Together they form a unique fingerprint.

Cite this