TY - JOUR
T1 - SU‐E‐J‐08
T2 - Dependence of Imaging Dose on Image Quality of Free‐Breathing 3DCBCT of Moving Tumors
AU - Kauweloa, K.
AU - Park, J.
AU - Song, W.
PY - 2012/6
Y1 - 2012/6
N2 - Purpose: To evaluate the impact on free‐breathing CBCT (FBCBCT) image quality to properly visualize the motion range of moving tumors as a function of imaging dose. Methods: A multi‐purpose body phantom (QUASAR) with a cylindrical cedar wood (density = 0.330g/cc), and an embedded 3‐cm diameter Polystyrene sphere (density = 0.855g/cc) were used to simulate lung tumor motion. Varian Trilogy with OBI system was used to acquire CBCT images (high‐dose mode: 125kVp, 80mA, 25ms/frame & low‐dose mode: 110kVp, 20mA, 20ms/frame). As the FBCBCT projections were acquired, the sphere moved in accordance to 30 simulated sinusoidal patient breathing patterns using a programmable motion platform, which were given the parameters: inhalation‐to‐exhalation (I/E) ratio ranging from 1‐0.2131, amplitudes of 1 and 3 cm, and periods 2, 4, and 6 seconds. Following the acquisition of FBCBCT images, the ITV contrast, defined as = (target pixel values inside the sphere ‐ avg. pixel values in background)/(avg. pixel values in background), were calculated per image slice. Results: All parameters, I/E ratio, period, and amplitude did not seem to have much impact on the percentage change of the ITV contrast as a function of imaging dose. The percentage‐change for all coronal images with a reduced ITV contrast when going from high‐dose to low‐dose was ‐ 4.61 ± 3.04%, while the percentage‐change for all coronal images with an ncreased ITV contrast when going from high‐dose to low‐dose, was 8.19 ± 3.61%. The overall percentage‐change of all 30 coronal images was 5.21 ± 6.49%. Conclusions: We found that imaging dose did not have much impact on the visibility of the ITV volume, irrespective of the amplitude, I/E ratio, or period. Thus, it seems that low‐dose FBCBCT may be just as suitable for clinical use while sparing a significant imaging dose to the patients.
AB - Purpose: To evaluate the impact on free‐breathing CBCT (FBCBCT) image quality to properly visualize the motion range of moving tumors as a function of imaging dose. Methods: A multi‐purpose body phantom (QUASAR) with a cylindrical cedar wood (density = 0.330g/cc), and an embedded 3‐cm diameter Polystyrene sphere (density = 0.855g/cc) were used to simulate lung tumor motion. Varian Trilogy with OBI system was used to acquire CBCT images (high‐dose mode: 125kVp, 80mA, 25ms/frame & low‐dose mode: 110kVp, 20mA, 20ms/frame). As the FBCBCT projections were acquired, the sphere moved in accordance to 30 simulated sinusoidal patient breathing patterns using a programmable motion platform, which were given the parameters: inhalation‐to‐exhalation (I/E) ratio ranging from 1‐0.2131, amplitudes of 1 and 3 cm, and periods 2, 4, and 6 seconds. Following the acquisition of FBCBCT images, the ITV contrast, defined as = (target pixel values inside the sphere ‐ avg. pixel values in background)/(avg. pixel values in background), were calculated per image slice. Results: All parameters, I/E ratio, period, and amplitude did not seem to have much impact on the percentage change of the ITV contrast as a function of imaging dose. The percentage‐change for all coronal images with a reduced ITV contrast when going from high‐dose to low‐dose was ‐ 4.61 ± 3.04%, while the percentage‐change for all coronal images with an ncreased ITV contrast when going from high‐dose to low‐dose, was 8.19 ± 3.61%. The overall percentage‐change of all 30 coronal images was 5.21 ± 6.49%. Conclusions: We found that imaging dose did not have much impact on the visibility of the ITV volume, irrespective of the amplitude, I/E ratio, or period. Thus, it seems that low‐dose FBCBCT may be just as suitable for clinical use while sparing a significant imaging dose to the patients.
UR - http://www.scopus.com/inward/record.url?scp=85024808455&partnerID=8YFLogxK
U2 - 10.1118/1.4734840
DO - 10.1118/1.4734840
M3 - Article
C2 - 28517554
AN - SCOPUS:85024808455
SN - 0094-2405
VL - 39
SP - 3653
JO - Medical physics
JF - Medical physics
IS - 6
ER -