Substrate binding stoichiometry and kinetics of the norepinephrine transporter

Joel W. Schwartz, Gaia Novarino, David W. Piston, Louis J. DeFelice

Research output: Contribution to journalArticlepeer-review

40 Scopus citations

Abstract

The human norepinephrine (NE) transporter (hNET) attenuates neuronal signaling by rapid NE clearance from the synaptic cleft, and NET is a target for cocaine and amphetamines as well as therapeutics for depression, obsessive-compulsive disorder, and post-traumatic stress disorder. In spite of its central importance in the nervous system, little is known about how NET substrates, such as NE, 1-methyl-4-tetrahydropyridinium (MPP+), or amphetamine, interact with NET at the molecular level. Nor do we understand the mechanisms behind the transport rate. Previously we introduced a fluorescent substrate similar to MPP+, which allowed separate and simultaneous binding and transport measurement (Schwartz, J. W., Blakely, R. D., and DeFelice, L. J. (2003) J. Biol. Chem. 278, 9768-9777). Here we use this substrate, 4-(4-(dimethylamino)styrl)-N-methyl-pyridinium (ASP+), in combination with green fluorescent protein-tagged hNETs to measure substrate-transporter stoichiometry and substrate binding kinetics. Calibrated confocal microscopy and fluorescence correlation spectroscopy reveal that hNETs, which are homo-multimers, bind one substrate molecule per transporter subunit. Substrate residence at the transporter, obtained from rapid on-off kinetics revealed in fluorescence correlation spectroscopy, is 526 μs. Substrate residence obtained by infinite dilution is 1000 times slower. This novel examination of substrate-transporter kinetics indicates that a single ASP + molecule binds and unbinds thousands of times before being transported or ultimately dissociated from hNET. Calibrated fluorescent images combined with mass spectroscopy give a transport rate of 0.06 ASP +/hNET-protein/s, thus 36,000 on-off binding events (and 36 actual departures) occur for one transport event. Therefore binding has a low probability of resulting in transport. We interpret these data to mean that inefficient binding could contribute to slow transport rates.

Original languageEnglish
Pages (from-to)19177-19184
Number of pages8
JournalJournal of Biological Chemistry
Volume280
Issue number19
DOIs
StatePublished - May 13 2005

Fingerprint

Dive into the research topics of 'Substrate binding stoichiometry and kinetics of the norepinephrine transporter'. Together they form a unique fingerprint.

Cite this