TY - JOUR
T1 - Subdiffractional tracking of internalized molecules reveals heterogeneous motion states of synaptic vesicles
AU - Joensuu, Merja
AU - Padmanabhan, Pranesh
AU - Durisic, Nela
AU - Bademosi, Adekunle T.D.
AU - Cooper-Williams, Elizabeth
AU - Morrow, Isabel C.
AU - Harper, Callista B.
AU - Jung, Woo Ram
AU - Parton, Robert G.
AU - Goodhill, Geoffrey J.
AU - Papadopulos, Andreas
AU - Meunier, Frédéric A.
N1 - Funding Information:
The superresolution microscopy was carried out at the Queensland Brain Institute's (QBI) Advanced Microimaging and Analysis Facility with the help of L. Hammond and R. Amor. We thank R. Martínez-Mármol (QBI) for help with the imaging, R. Gormal (QBI) for help with nanobody preparation, J. S. Borbely and M. Lakadamyali (Advanced Fluorescence Imaging and Biophysics group at The Institute of Photonic Sciences) for help with nanobody fluorescence intensity analysis, S. Manley, D. Choquet, J.-B. Sibarita, E. Hosy, and L. Cognet for insightful discussions, and R. Tweedale for critical appraisal of the manuscript. This work was supported by an Australian Research Council Discovery Project grant (DP120104057) and an Australian Research Council Linkage Infrastructure, Equipment, and Facilities grant (LE130100078). F.A. Meunier is a Senior Research Fellow of the National Health and Medical Research Council and was the recipient of a Queensland International Fellowship. R.G. Parton is a Principal Research Fellow of the National Health and Medical Research Council and supported by National Health and Medical Research Council Program grant 1037320. P. Padmanabhan was supported by the University of Queensland Postdoctoral Research Fellowship.
Publisher Copyright:
© 2016 Joensuu et al.
PY - 2016
Y1 - 2016
N2 - Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti-green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)-pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2-pHluorin/Atto647N-tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings.
AB - Our understanding of endocytic pathway dynamics is severely restricted by the diffraction limit of light microscopy. To address this, we implemented a novel technique based on the subdiffractional tracking of internalized molecules (sdTIM). This allowed us to image anti-green fluorescent protein Atto647N-tagged nanobodies trapped in synaptic vesicles (SVs) from live hippocampal nerve terminals expressing vesicle-associated membrane protein 2 (VAMP2)-pHluorin with 36-nm localization precision. Our results showed that, once internalized, VAMP2-pHluorin/Atto647N-tagged nanobodies exhibited a markedly lower mobility than on the plasma membrane, an effect that was reversed upon restimulation in presynapses but not in neighboring axons. Using Bayesian model selection applied to hidden Markov modeling, we found that SVs oscillated between diffusive states or a combination of diffusive and transport states with opposite directionality. Importantly, SVs exhibiting diffusive motion were relatively less likely to switch to the transport motion. These results highlight the potential of the sdTIM technique to provide new insights into the dynamics of endocytic pathways in a wide variety of cellular settings.
UR - http://www.scopus.com/inward/record.url?scp=84994158561&partnerID=8YFLogxK
U2 - 10.1083/jcb.201604001
DO - 10.1083/jcb.201604001
M3 - Article
C2 - 27810917
AN - SCOPUS:84994158561
SN - 0021-9525
VL - 215
SP - 277
EP - 292
JO - Journal of Cell Biology
JF - Journal of Cell Biology
IS - 2
ER -