TY - JOUR
T1 - Structural determinants of herpesvirus entry mediator recognition by murine B and T lymphocyte attenuator
AU - Nelson, Christopher A.
AU - Fremont, Marcel D.
AU - Sedy, John R.
AU - Norris, Paula S.
AU - Ware, Carl F.
AU - Murphy, Kenneth M.
AU - Fremont, Daved H.
PY - 2008/1/15
Y1 - 2008/1/15
N2 - The B and T lymphocyte attenuator (BTLA) appears to act as a negative regulator of T cell activation and growth. BTLA specifically interacts with herpesvirus entry mediator (HVEM), a member of the TNFR family. Herein, we have undertaken surface plasmon resonance studies to quantitatively assess BTLA and HVEM ectodomain interactions. We find that soluble BALB/cJ BTLA engages HVEM with an equilibrium affinity of 0.97 ± 0.19 μM while the C57BL/6 BTLA binds slightly better with an equilibrium affinity of 0.42 ± 0.06 μM. Despite its lower affinity for HVEM, the kinetic half-life of BALB/cJ BTLA complexes are twice as long as observed for C57BL/6 BTLA (4 vs 2 s). To further explore these interactions, we solved the crystal structure of a murine BTLA (BALB/cJ) ectodomain at 1.8-Å resolution, revealing a β sandwich fold with strong similarity to I-set members of the Ig superfamily. Using a structure-based mutagenesis strategy, we then examined the individual contributions of 26 BTLA surface-exposed residues toward HVEM binding. Four single-site substitutions were identified that decrease HVEM binding below detectable levels and two that decrease binding by more than half. All six of these cluster at the edge of the β sandwich in a membrane distal patch formed primarily from the A and G strands. This patch falls within the contacting surface recently revealed in the crystal structure of the human BTLA-HVEM cocomplex. The critical binding residues identified here are highly conserved across species, suggesting that BTLA employs a conserved binding mode for HVEM recognition.
AB - The B and T lymphocyte attenuator (BTLA) appears to act as a negative regulator of T cell activation and growth. BTLA specifically interacts with herpesvirus entry mediator (HVEM), a member of the TNFR family. Herein, we have undertaken surface plasmon resonance studies to quantitatively assess BTLA and HVEM ectodomain interactions. We find that soluble BALB/cJ BTLA engages HVEM with an equilibrium affinity of 0.97 ± 0.19 μM while the C57BL/6 BTLA binds slightly better with an equilibrium affinity of 0.42 ± 0.06 μM. Despite its lower affinity for HVEM, the kinetic half-life of BALB/cJ BTLA complexes are twice as long as observed for C57BL/6 BTLA (4 vs 2 s). To further explore these interactions, we solved the crystal structure of a murine BTLA (BALB/cJ) ectodomain at 1.8-Å resolution, revealing a β sandwich fold with strong similarity to I-set members of the Ig superfamily. Using a structure-based mutagenesis strategy, we then examined the individual contributions of 26 BTLA surface-exposed residues toward HVEM binding. Four single-site substitutions were identified that decrease HVEM binding below detectable levels and two that decrease binding by more than half. All six of these cluster at the edge of the β sandwich in a membrane distal patch formed primarily from the A and G strands. This patch falls within the contacting surface recently revealed in the crystal structure of the human BTLA-HVEM cocomplex. The critical binding residues identified here are highly conserved across species, suggesting that BTLA employs a conserved binding mode for HVEM recognition.
UR - http://www.scopus.com/inward/record.url?scp=40449086741&partnerID=8YFLogxK
U2 - 10.4049/jimmunol.180.2.940
DO - 10.4049/jimmunol.180.2.940
M3 - Article
C2 - 18178834
AN - SCOPUS:40449086741
SN - 0022-1767
VL - 180
SP - 940
EP - 947
JO - Journal of Immunology
JF - Journal of Immunology
IS - 2
ER -