Structural biology of thermoTRPV channels

Research output: Contribution to journalReview articlepeer-review

11 Scopus citations


Essential for physiology, transient receptor potential (TRP) channels constitute a large and diverse family of cation channels functioning as cellular sensors responding to a vast array of physical and chemical stimuli. Detailed understanding of the inner workings of TRP channels has been hampered by a lack of atomic structures, though structural biology of TRP channels has been an enthusiastic endeavor since their molecular identification two decades ago. These multi-domain integral membrane proteins, exhibiting complex polymodal gating behavior, have been a challenge for traditional X-ray crystallography, which requires formation of well-ordered protein crystals. X-ray structures remain limited to a few TRP channel proteins to date. Fortunately, recent breakthroughs in single-particle cryo-electron microscopy (cryo-EM) have enabled rapid growth of the number of TRP channel structures, providing tremendous insights into channel gating and regulation mechanisms and serving as foundations for further mechanistic investigations. This brief review focuses on recent exciting developments in structural biology of a subset of TRP channels, the calcium-permeable, non-selective and thermosensitive vanilloid subfamily of TRP channels (TRPV1-4), and the permeation and gating mechanisms revealed by structures.

Original languageEnglish
Article number102106
JournalCell Calcium
StatePublished - Dec 2019


  • Cryo-EM
  • Crystallography
  • Ion channel
  • TRP channel
  • TRPV
  • ThermoTRPV


Dive into the research topics of 'Structural biology of thermoTRPV channels'. Together they form a unique fingerprint.

Cite this