5 Scopus citations

Abstract

Mechanosensitive channels of small conductance, found in many living organisms, open under elevated membrane tension and thus play crucial roles in biological response to mechanical stress. Amongst these channels, MscK is unique in that its activation also requires external potassium ions. To better understand this dual gating mechanism by force and ligand, we elucidate distinct structures of MscK along the gating cycle using cryo-electron microscopy. The heptameric channel comprises three layers: a cytoplasmic domain, a periplasmic gating ring, and a markedly curved transmembrane domain that flattens and expands upon channel opening, which is accompanied by dilation of the periplasmic ring. Furthermore, our results support a potentially unifying mechanotransduction mechanism in ion channels depicted as flattening and expansion of the transmembrane domain.

Original languageEnglish
Article number6904
JournalNature communications
Volume13
Issue number1
DOIs
StatePublished - Dec 2022

Fingerprint

Dive into the research topics of 'Structural basis for mechanotransduction in a potassium-dependent mechanosensitive ion channel'. Together they form a unique fingerprint.

Cite this