Abstract
To better understand TCR discrimination of multiple ligands, we have analyzed the crystal structures of two Hb peptide/I-Ek complexes that differ by only a single amino acid substitution at the P6 anchor position within the peptide (E73D). Detailed comparison of multiple independently determined structures at 1.9 Å resolution reveals that removal of a single buried methylene group can alter a critical portion of the TCR recognition surface. Significant variance was observed in the peptide P5-P8 main chain as well as a rotamer difference at LeuP8, ∼10 Å distal from the substitution. No significant variations were observed in the conformation of the two MHC class II molecules. The ligand alteration results in two peptide/MHC complexes that generate bulk T cell responses that are distinct and essentially nonoverlapping. For the Hb-specific T cell 3.L2, substitution reduces the potency of the ligand 1000-fold. Soluble 3.L2 TCR binds the two peptide/MHC complexes with similar affinity, although with faster kinetics. These results highlight the role of subtle variations in MHC Ag presentation on T cell activation and signaling.
Original language | English |
---|---|
Pages (from-to) | 3345-3354 |
Number of pages | 10 |
Journal | Journal of Immunology |
Volume | 166 |
Issue number | 5 |
DOIs | |
State | Published - Mar 1 2001 |