Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration

Xuefeng Yu, Yuefang Huang, Patricia Collin-Osdoby, Philip Osdoby

Research output: Contribution to journalArticlepeer-review

200 Scopus citations


Signals targeting OCs to bone and resorption sites are not well characterized. A chemoattractant receptor (CXCR4), highly expressed in murine OC precursors, mediated their chemokine (SDF-1)-induced chemoattraction, collagen transmigration, and MMP-9 expression. Thus, bone vascular and stromal SDF-1 may direct OC precursors into bone and marrow sites for development and bone resorption. Introduction: Although chemokines are essential for trafficking and homing of circulating hematopoietic cells under normal and pathological conditions, their potential roles in osteoclast (OC) recruitment or function are generally unknown. CXCR4 and its unique ligand, stromal cell-derived factor-1 (SDF-1), critically control the matrix metalloproteinase (MMP)-dependent targeting of hematopoietic cells into bone and within the marrow microenvironment. Therefore, SDF-1/CXCR4 may regulate OC precursor recruitment to sites for development and activation. Methods: Chemokine receptor mRNA expression was analyzed during OC formation induced by RANKL in murine RAW 264.7 cells. SDF-1 versus RANKL effects on chemotaxis, transcollagen migration, MMP-9 expression and activity, OC development, and bone resorption were evaluated in RAW cells or RAW-OCs. Results: CXCR4 was highly expressed in RAW cells and downregulated during their RANKL development into bone-resorptive RAW-OCs. SDF-1, but not RANKL, elicited RAW cell chemotaxis. Conversely, RANKL, but not SDF-1, promoted RAW-OC development, TRAP activity, cathepsin K expression, and bone pit resorption, and SDF-1 did not modify these RANKL responses. Both SDF-1 and RANKL increased MMP-9, a matrix-degrading enzyme essential for OC precursor migration into developing bone marrow cavities, and increased transcollagen migration of RAW cells in a MMP-dependent manner. SDF-1 also upregulated MMP-9 in various primary murine OC precursor cells. Because RANKL induced a higher, more sustained expression of MMP-9 in RAW cells than did SDF-1, MMP-9 may have an additional role in mature OCs. Consistent with this, MMP-9 upregulation during RANKL-induced RAW-OC development was necessary for initiation of bone pit resorption. Conclusions: SDF-1, a chemokine highly expressed by bone vascular endothelial and marrow stromal cells, may be a key signal for the selective attraction of circulating OC precursors into bone and their migration within marrow to appropriate perivascular stromal sites for RANKL differentiation into resorptive OCs. Thus, SDF-1 and RANKL likely serve complementary physiological functions, partly mediated through increases in MMP-9, to coordinate stages of OC precursor recruitment, development, and function.

Original languageEnglish
Pages (from-to)1404-1418
Number of pages15
JournalJournal of Bone and Mineral Research
Issue number8
StatePublished - Aug 2003


  • Chemokines
  • Matrix metalloproteinase-9
  • Osteoclast
  • Stromal cell-derived factor-1
  • Transmigration


Dive into the research topics of 'Stromal cell-derived factor-1 (SDF-1) recruits osteoclast precursors by inducing chemotaxis, matrix metalloproteinase-9 (MMP-9) activity, and collagen transmigration'. Together they form a unique fingerprint.

Cite this