Abstract

The phosphomannosyl recognition marker of acid hydrolases, which mediates their translocation to lysosomes, has been shown to be synthesized in two steps. First, N-acetylglucosamine 1-phosphate is transferred to an acceptor mannose by UDP-N-acetylglucosamine:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase, resulting in a phosphate group in diester linkage between the outer N-acetylglucosamine and the inner mannose. Next, an a-N-acetylglucosaminyl phosphodiesterase removes the N-acetylglucosamine, leaving the phosphate in monoester linkage with the underlying mannose residue. This exposed phosphomannosyl residue serves as the essential component of a recognition marker which leads to binding to high-affinity receptors and subsequent translocation to lysosomes. We propose that the first enzyme in this scheme, N-acetylglucosaminylphosphotransferase, catalyses the initial, determining step by which newly synthesized acid hydrolases are distinguished from other newly synthesized glycoproteins and thus are eventually targeted to lysosomes. The absence of this enzyme activity, as in inclusion-cell (I-cell) disease and pseudo-Hurler polydystrophy, precludes the receptor-mediated targeting of newly synthesized acid hydrolases to lysosomes. As a consequence, the enzymes are secreted into the extracellular milieu.

Original languageEnglish
Pages (from-to)138-156
Number of pages19
JournalCiba Foundation symposium
Issue number92
StatePublished - Dec 1 1982

Fingerprint

Dive into the research topics of 'Steps in the phosphorylation of the high mannose oligosaccharides of lysosomal enzymes.'. Together they form a unique fingerprint.

Cite this