TY - GEN
T1 - Statistically-constrained robust diffeomorphic registration
AU - Zeng, Ke
AU - Sotiras, Aristeidis
AU - Davatzikos, Christos
PY - 2018/5/23
Y1 - 2018/5/23
N2 - Accurate subject-to-template alignment requires deformation models with high degrees of freedom to account for the high anatomical variability. Without proper regularization, such models tend to match the images aggressively, often producing unrealistic transformations, especially in the presence of noise, or pathologies such as various types of lesions. To improve the robustness of deformable registration, we propose a novel framework, which makes use of statistical deformation models (SDMs) for diffeomorphisms. We present a general approach to constructing such SDMs, and detail how to use them for regularizing a given transformation. To preserve the diffeomorphic property, while making use of linear statistical models, we convert the deformation field into a stationary velocity field through the logarithm operator. To account for learning in a high-dimensional, low-sample size setting, we model the high-dimensional velocity field as a collection of mutually constrained local velocity fields. For each local field, a low-dimensional representation is learned using principal component analysis. To capture possible dependencies across local transformations, canonical correlation analysis is performed on each pair of local velocities in the learned low-dimensional space. Experiments on healthy brain images show that the model can capture the normative variation of subject-to-template deformation fields with sub-millimeter accuracy. The method is validated on simulated brain lesion images and is tested on real brain images with pathologies, producing significantly smoother and more robust results than its non-statistical counterpart.
AB - Accurate subject-to-template alignment requires deformation models with high degrees of freedom to account for the high anatomical variability. Without proper regularization, such models tend to match the images aggressively, often producing unrealistic transformations, especially in the presence of noise, or pathologies such as various types of lesions. To improve the robustness of deformable registration, we propose a novel framework, which makes use of statistical deformation models (SDMs) for diffeomorphisms. We present a general approach to constructing such SDMs, and detail how to use them for regularizing a given transformation. To preserve the diffeomorphic property, while making use of linear statistical models, we convert the deformation field into a stationary velocity field through the logarithm operator. To account for learning in a high-dimensional, low-sample size setting, we model the high-dimensional velocity field as a collection of mutually constrained local velocity fields. For each local field, a low-dimensional representation is learned using principal component analysis. To capture possible dependencies across local transformations, canonical correlation analysis is performed on each pair of local velocities in the learned low-dimensional space. Experiments on healthy brain images show that the model can capture the normative variation of subject-to-template deformation fields with sub-millimeter accuracy. The method is validated on simulated brain lesion images and is tested on real brain images with pathologies, producing significantly smoother and more robust results than its non-statistical counterpart.
KW - Image registration
KW - Statistical deformation models
KW - Statistical learning
UR - http://www.scopus.com/inward/record.url?scp=85048134067&partnerID=8YFLogxK
U2 - 10.1109/ISBI.2018.8363759
DO - 10.1109/ISBI.2018.8363759
M3 - Conference contribution
AN - SCOPUS:85048134067
T3 - Proceedings - International Symposium on Biomedical Imaging
SP - 1083
EP - 1087
BT - 2018 IEEE 15th International Symposium on Biomedical Imaging, ISBI 2018
PB - IEEE Computer Society
T2 - 15th IEEE International Symposium on Biomedical Imaging, ISBI 2018
Y2 - 4 April 2018 through 7 April 2018
ER -