High density diffuse optical tomography (HD-DOT) is a noninvasive neuroimaging modality with moderate spatial resolution and localization accuracy. Due to portability and wear-ability advantages, HD-DOT has the potential to be used in populations that are not amenable to functional magnetic resonance imaging (fMRI), such as hospitalized patients and young children. However, whereas the use of event-related stimuli designs, general linear model (GLM) analysis, and imaging statistics are standardized and routine with fMRI, such tools are not yet common practice in HD-DOT. In this paper we adapt and optimize fundamental elements of fMRI analysis for application to HD-DOT. We show the use of event-related protocols and GLM de-convolution analysis in un-mixing multi-stimuli event-related HD-DOT data. Statistical parametric mapping (SPM) in the framework of a general linear model is developed considering the temporal and spatial characteristics of HD-DOT data. The statistical analysis utilizes a random field noise model that incorporates estimates of the local temporal and spatial correlations of the GLM residuals. The multiple-comparison problem is addressed using a cluster analysis based on non-stationary Gaussian random field theory. These analysis tools provide access to a wide range of experimental designs necessary for the study of the complex brain functions. In addition, they provide a foundation for understanding and interpreting HD-DOT results with quantitative estimates for the statistical significance of detected activation foci.

Original languageEnglish
Pages (from-to)104-116
Number of pages13
StatePublished - Jan 15 2014


  • Diffuse optical tomography
  • General linear model
  • Non-stationary cluster analysis
  • Statistical parametric mapping


Dive into the research topics of 'Statistical analysis of high density diffuse optical tomography'. Together they form a unique fingerprint.

Cite this