TY - JOUR
T1 - Standardizing naming conventions in radiation oncology
AU - Santanam, Lakshmi
AU - Hurkmans, Coen
AU - Mutic, Sasa
AU - Van Vliet-Vroegindeweij, Corine
AU - Brame, Scott
AU - Straube, William
AU - Galvin, James
AU - Tripuraneni, Prabhakar
AU - Michalski, Jeff
AU - Bosch, Walter
N1 - Funding Information:
This work supported by NIH U24 Grant CA81647 .
PY - 2012/7/15
Y1 - 2012/7/15
N2 - Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were satisfactorily identified using this nomenclature. Conclusions: Use of standardized naming conventions is important to facilitate comparison of dosimetry across patient datasets. The guidelines presented here will facilitate international acceptance across a wide range of efforts, including groups organizing clinical trials, Radiation Oncology Institute, Dutch Radiation Oncology Society, Integrating the Healthcare Enterprise, Radiation Oncology domain (IHE-RO), and Digital Imaging and Communication in Medicine (DICOM).
AB - Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creating this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were satisfactorily identified using this nomenclature. Conclusions: Use of standardized naming conventions is important to facilitate comparison of dosimetry across patient datasets. The guidelines presented here will facilitate international acceptance across a wide range of efforts, including groups organizing clinical trials, Radiation Oncology Institute, Dutch Radiation Oncology Society, Integrating the Healthcare Enterprise, Radiation Oncology domain (IHE-RO), and Digital Imaging and Communication in Medicine (DICOM).
KW - Naming conventions
KW - Standardizing
KW - Structures
KW - Target volumes
UR - http://www.scopus.com/inward/record.url?scp=84861587117&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2011.09.054
DO - 10.1016/j.ijrobp.2011.09.054
M3 - Article
C2 - 22245204
AN - SCOPUS:84861587117
SN - 0360-3016
VL - 83
SP - 1344
EP - 1349
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 4
ER -