TY - JOUR
T1 - Stabilization mechanism for many-body localization in two dimensions
AU - Foo, D. C.W.
AU - Swain, N.
AU - Sengupta, P.
AU - Lemarié, G.
AU - Adam, S.
N1 - Publisher Copyright:
© 2023 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
PY - 2023/7
Y1 - 2023/7
N2 - Experiments in cold-atom systems see almost identical signatures of many-body localization (MBL) in both one-dimensional (d=1) and two-dimensional (d=2) systems despite the thermal avalanche hypothesis showing that the MBL phase is unstable for d>1. Underpinning the thermal avalanche argument is the assumption of exponential localization of local integrals of motion (LIOM). In this Letter we demonstrate that the addition of a confining potential-as is typical in experimental setups-allows a noninteracting disordered system to have superexponentially (Gaussian) localized wave functions, and an interacting disordered system to undergo a localization transition. Moreover, we show that Gaussian localization of MBL LIOM shifts the quantum avalanche critical dimension from d=1 to d=2, potentially bridging the divide between the experimental demonstrations of MBL in these systems and existing theoretical arguments that claim that such demonstrations are impossible.
AB - Experiments in cold-atom systems see almost identical signatures of many-body localization (MBL) in both one-dimensional (d=1) and two-dimensional (d=2) systems despite the thermal avalanche hypothesis showing that the MBL phase is unstable for d>1. Underpinning the thermal avalanche argument is the assumption of exponential localization of local integrals of motion (LIOM). In this Letter we demonstrate that the addition of a confining potential-as is typical in experimental setups-allows a noninteracting disordered system to have superexponentially (Gaussian) localized wave functions, and an interacting disordered system to undergo a localization transition. Moreover, we show that Gaussian localization of MBL LIOM shifts the quantum avalanche critical dimension from d=1 to d=2, potentially bridging the divide between the experimental demonstrations of MBL in these systems and existing theoretical arguments that claim that such demonstrations are impossible.
UR - http://www.scopus.com/inward/record.url?scp=85165990591&partnerID=8YFLogxK
U2 - 10.1103/PhysRevResearch.5.L032011
DO - 10.1103/PhysRevResearch.5.L032011
M3 - Article
AN - SCOPUS:85165990591
SN - 2643-1564
VL - 5
JO - Physical Review Research
JF - Physical Review Research
IS - 3
M1 - L032011
ER -