Spike-timing computation properties of a feed-forward neural network model

Drew B. Sinha, Noah M. Ledbetter, Dennis L. Barbour

Research output: Contribution to journalArticlepeer-review

7 Scopus citations


Brain function is characterized by dynamical interactions among networks of neurons. These interactions are mediated by network topology at many scales ranging from microcircuits to brain areas. Understanding how networks operate can be aided by understanding how the transformation of inputs depends upon network connectivity patterns, e.g., serial and parallel pathways. To tractably determine how single synapses or groups of synapses in such pathways shape these transformations, we modeled feed-forward networks of 7-22 neurons in which synaptic strength changed according to a spike-timing dependent plasticity (STDP) rule. We investigated how activity varied when dynamics were perturbed by an activity-dependent electrical stimulation protocol (spike-triggered stimulation; STS) in networks of different topologies and background input correlations. STS can successfully reorganize functional brain networks in vivo, but with a variability in effectiveness that may derive partially from the underlying network topology. In a simulated network with a single disynaptic pathway driven by uncorrelated background activity, structured spike-timing relationships between polysynaptically connected neurons were not observed. When background activity was correlated or parallel disynaptic pathways were added, however, robust polysynaptic spike timing relationships were observed, and application of STS yielded predictable changes in synaptic strengths and spike-timing relationships. These observations suggest that precise input-related or topologically induced temporal relationships in network activity are necessary for polysynaptic signal propagation. Such constraints for polysynaptic computation suggest potential roles for higher-order topological structure in network organization, such as maintaining polysynaptic correlation in the face of relatively weak synapses.

Original languageEnglish
Article number5
JournalFrontiers in Computational Neuroscience
Issue numberJAN
StatePublished - Jan 28 2014


  • Biological neural networks
  • Computational modeling
  • Microcircuits
  • Network connectivity
  • Spike-timing dependent plasticity (STDP)


Dive into the research topics of 'Spike-timing computation properties of a feed-forward neural network model'. Together they form a unique fingerprint.

Cite this