TY - JOUR
T1 - Speckle-modulating optical coherence tomography in living mice and humans
AU - Liba, Orly
AU - Lew, Matthew D.
AU - Sorelle, Elliott D.
AU - Dutta, Rebecca
AU - Sen, Debasish
AU - Moshfeghi, Darius M.
AU - Chu, Steven
AU - De La Zerda, Adam
N1 - Funding Information:
This work was funded in part by grants from the Claire Giannini Fund, the United States Air Force (FA9550-15-1-0007), the National Institutes of Health (NIH DP50D012179), the National Science Foundation (NSF 1438340), the Damon Runyon Cancer Research Foundation (DFS#06-13), the Susan G. Komen Breast Cancer Foundation (SAB15- 00003), the Mary Kay Foundation (017-14), the Donald E. and Delia B. Baxter Foundation, the Skippy Frank Foundation, the Center for Cancer Nanotechnology Excellence and Translation (CCNE-T; NIH-NCI U54CA151459) and the Stanford Bio-X Interdisciplinary Initiative Program (IIP6-43). A.d.l.Z is a Chan Zuckerberg Biohub investigator and a Pew-Stewart Scholar for Cancer Research supported by The Pew Charitable Trusts and The Alexander and Margaret Stewart Trust. O.L. is grateful for a Stanford Bowes Bio-X Graduate Fellowship. E.D.S. wishes to acknowledge funding from the Stanford Biophysics Program training grant (T32 GM-08294). We wish to thank Dr Joseph M. Kahn and Dr Joseph W. Goodman for insightful discussions, Roopa Dalal for images of tissue sections, Ayana Henderson, Nicholas Dwork and Yonatan Winetraub for useful discussions, Timothy R. Brand and the Ginzton Crystal Shop for creating the lapped diffuser, Stanford Neuroscience Microscopy Service (supported by NIH NS069375) and Jim Strommer for custom artwork in Fig. 1.
Publisher Copyright:
© The Author(s) 2017.
PY - 2017/6/20
Y1 - 2017/6/20
N2 - Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin - features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.
AB - Optical coherence tomography (OCT) is a powerful biomedical imaging technology that relies on the coherent detection of backscattered light to image tissue morphology in vivo. As a consequence, OCT is susceptible to coherent noise (speckle noise), which imposes significant limitations on its diagnostic capabilities. Here we show speckle-modulating OCT (SM-OCT), a method based purely on light manipulation that virtually eliminates speckle noise originating from a sample. SM-OCT accomplishes this by creating and averaging an unlimited number of scans with uncorrelated speckle patterns without compromising spatial resolution. Using SM-OCT, we reveal small structures in the tissues of living animals, such as the inner stromal structure of a live mouse cornea, the fine structures inside the mouse pinna, and sweat ducts and Meissner's corpuscle in the human fingertip skin - features that are otherwise obscured by speckle noise when using conventional OCT or OCT with current state of the art speckle reduction methods.
UR - http://www.scopus.com/inward/record.url?scp=85021176645&partnerID=8YFLogxK
U2 - 10.1038/ncomms15845
DO - 10.1038/ncomms15845
M3 - Article
C2 - 28632205
AN - SCOPUS:85021176645
SN - 2041-1723
VL - 8
JO - Nature Communications
JF - Nature Communications
M1 - 15845
ER -