Abstract

Amyloidogenic proteins aggregate through a selftemplating mechanism that likely involves oligomeric or prefibrillar intermediates. For diseaseassociated amyloidogenic proteins, such intermediates have been suggested to be the primary cause of cellular toxicity. However, isolation and characterization of these oligomeric intermediates has proven difficult, sparking controversy over their biological relevance in disease pathology. Here, we describe an oligomeric species of a yeast prion protein in cells that is sufficient for prion transmission and infectivity. These oligomers differ from the classic prion aggregates in that they are soluble and less resistant to SDS. We found that large, SDS-resistant aggregates were required for the prion phenotype but that soluble, more SDS-sensitive oligomers contained all the information necessary to transmit the prion conformation. Thus, we identified distinct functional requirements of two types of prion species for this endogenous epigenetic element. Furthermore, the nontoxic, selfreplicating amyloid conformers of yeast prion proteins have again provided valuable insight into the mechanisms of amyloid formation and propagation in cells.

Original languageEnglish
Pages (from-to)197-204
Number of pages8
JournalJournal of Cell Biology
Volume203
Issue number2
DOIs
StatePublished - Oct 28 2013

Fingerprint

Dive into the research topics of 'Soluble oligomers are sufficient for transmission of a yeast prion but do not confer phenotype'. Together they form a unique fingerprint.

Cite this