TY - JOUR
T1 - Solid phase radiosynthesis of an olaparib derivative using 4-[18F] fluorobenzoic acid and in vivo evaluation in breast and prostate cancer xenograft models for PARP-1 expression
AU - Xu, Jinbin
AU - Chen, Huaping
AU - Rogers, Buck E.
AU - Katzenellenbogen, John A.
AU - Zhou, Dong
N1 - Publisher Copyright:
© 2022 Elsevier Inc.
PY - 2022/11/1
Y1 - 2022/11/1
N2 - Introduction: Solid-phase synthesis and conjugation reactions of acids and amines using coupling reagents are common in organic synthesis, but rare in 18F radiochemistry. 4-[18F]Fluorobenzoic acid (FBA) is a useful building block, but is seldom used directly with coupling reagents for the preparation of 18F radiopharmaceuticals. To overcome the inconveniences associated with using [18F]FBA in conjugation reactions, we have developed a non-covalent solid-phase synthesis (SPS) strategy for the radiosynthesis of [18F]PARPi, a derivative of olaparib as a Poly (ADP-ribose) polymerase-1 (PARP-1) radioligand. Methods: Fluoro-, bromo- and iodo-benzoic derivatives of olaparib were synthesized, and their PARP-1 affinities were measured using a recently developed cell culture-based competitive assay. To produce [18F]PARPi, [18F]FBA was radiosynthesized and purified using a cation-exchange cartridge, and then trapped by an anion-exchange resin cartridge, on which the solid-phase radiosynthesis was carried out to produce the desired product. [18F]PARPi was evaluated in vivo in breast and prostate xenograft tumor models by microPET imaging, biodistribution and autoradiography. Results: The best derivatives of olaparib were identified as compound 4, 7 and 8. [18F]4 ([18F]PARPi) was radiosynthesized in high radiochemical yield, high molar activity and high radiochemical purity using this SPS strategy. The in vivo evaluation of [18F]PARPi demonstrates the PARP-1 specific uptake of [18F]PARPi in the animal models. Conclusions: This method is simple and efficient, having great potential for the synthesis of radiopharmaceuticals starting from [18F]FBA or other radiolabeled aromatic acids. Using [18F]PARPi prepared by this method, we demonstrated the promise of [18F]PARPi in the nuclear imaging of PARP-1 expression.
AB - Introduction: Solid-phase synthesis and conjugation reactions of acids and amines using coupling reagents are common in organic synthesis, but rare in 18F radiochemistry. 4-[18F]Fluorobenzoic acid (FBA) is a useful building block, but is seldom used directly with coupling reagents for the preparation of 18F radiopharmaceuticals. To overcome the inconveniences associated with using [18F]FBA in conjugation reactions, we have developed a non-covalent solid-phase synthesis (SPS) strategy for the radiosynthesis of [18F]PARPi, a derivative of olaparib as a Poly (ADP-ribose) polymerase-1 (PARP-1) radioligand. Methods: Fluoro-, bromo- and iodo-benzoic derivatives of olaparib were synthesized, and their PARP-1 affinities were measured using a recently developed cell culture-based competitive assay. To produce [18F]PARPi, [18F]FBA was radiosynthesized and purified using a cation-exchange cartridge, and then trapped by an anion-exchange resin cartridge, on which the solid-phase radiosynthesis was carried out to produce the desired product. [18F]PARPi was evaluated in vivo in breast and prostate xenograft tumor models by microPET imaging, biodistribution and autoradiography. Results: The best derivatives of olaparib were identified as compound 4, 7 and 8. [18F]4 ([18F]PARPi) was radiosynthesized in high radiochemical yield, high molar activity and high radiochemical purity using this SPS strategy. The in vivo evaluation of [18F]PARPi demonstrates the PARP-1 specific uptake of [18F]PARPi in the animal models. Conclusions: This method is simple and efficient, having great potential for the synthesis of radiopharmaceuticals starting from [18F]FBA or other radiolabeled aromatic acids. Using [18F]PARPi prepared by this method, we demonstrated the promise of [18F]PARPi in the nuclear imaging of PARP-1 expression.
KW - 4-[F]fluorobenzoic acid
KW - Olaparib
KW - PARP-1
KW - PET imaging
KW - Solid phase radiosynthesis
UR - http://www.scopus.com/inward/record.url?scp=85138796902&partnerID=8YFLogxK
U2 - 10.1016/j.nucmedbio.2022.09.002
DO - 10.1016/j.nucmedbio.2022.09.002
M3 - Article
C2 - 36193598
AN - SCOPUS:85138796902
SN - 0969-8051
VL - 114-115
SP - 65
EP - 70
JO - Nuclear Medicine and Biology
JF - Nuclear Medicine and Biology
ER -