TY - JOUR
T1 - Software tool for physics chart checks
AU - Li, H. Harold
AU - Wu, Yu
AU - Yang, Deshan
AU - Mutic, Sasa
N1 - Publisher Copyright:
© 2014 American Society for Radiation Oncology.
PY - 2014/11/1
Y1 - 2014/11/1
N2 - Physics chart check has long been a central quality assurance (QC) measure in radiation oncology. The purpose of this work is to describe a software tool that aims to accomplish simplification, standardization, automation, and forced functions in the process. Methods and materials: Nationally recognized guidelines, including American College of Radiology and American Society for Radiation Oncology guidelines and technical standards, and the American Association of Physicists in Medicine Task Group reports were identified, studied, and summarized. Meanwhile, the reported events related to physics chart check service were analyzed using an event reporting and learning system. A number of shortfalls in the chart check process were identified. To address these problems, a software tool was designed and developed under Microsoft. Net in C# to hardwire as many components as possible at each stage of the process. Results: The software consists of the following 4 independent modules: (1) chart check management; (2) pretreatment and during treatment chart check assistant; (3) posttreatment chart check assistant; and (4) quarterly peer-review management. The users were a large group of physicists in the author's radiation oncology clinic. During over 1 year of use the tool has proven very helpful in chart checking management, communication, documentation, and maintaining consistency. Conclusions: The software tool presented in this work aims to assist physicists at each stage of the physics chart check process. The software tool is potentially useful for any radiation oncology clinics that are either in the process of pursuing or maintaining the American College of Radiology accreditation.
AB - Physics chart check has long been a central quality assurance (QC) measure in radiation oncology. The purpose of this work is to describe a software tool that aims to accomplish simplification, standardization, automation, and forced functions in the process. Methods and materials: Nationally recognized guidelines, including American College of Radiology and American Society for Radiation Oncology guidelines and technical standards, and the American Association of Physicists in Medicine Task Group reports were identified, studied, and summarized. Meanwhile, the reported events related to physics chart check service were analyzed using an event reporting and learning system. A number of shortfalls in the chart check process were identified. To address these problems, a software tool was designed and developed under Microsoft. Net in C# to hardwire as many components as possible at each stage of the process. Results: The software consists of the following 4 independent modules: (1) chart check management; (2) pretreatment and during treatment chart check assistant; (3) posttreatment chart check assistant; and (4) quarterly peer-review management. The users were a large group of physicists in the author's radiation oncology clinic. During over 1 year of use the tool has proven very helpful in chart checking management, communication, documentation, and maintaining consistency. Conclusions: The software tool presented in this work aims to assist physicists at each stage of the physics chart check process. The software tool is potentially useful for any radiation oncology clinics that are either in the process of pursuing or maintaining the American College of Radiology accreditation.
UR - http://www.scopus.com/inward/record.url?scp=84912574984&partnerID=8YFLogxK
U2 - 10.1016/j.prro.2014.03.001
DO - 10.1016/j.prro.2014.03.001
M3 - Article
C2 - 25407872
AN - SCOPUS:84912574984
SN - 1879-8500
VL - 4
SP - E217-E225
JO - Practical Radiation Oncology
JF - Practical Radiation Oncology
IS - 6
ER -