TY - JOUR
T1 - Small-molecule synergist of the Wnt/β-catenin signaling pathway
AU - Zhang, Qisheng
AU - Major, Michael B.
AU - Takanashi, Shinichi
AU - Camp, Nathan D.
AU - Nishiya, Naoyuki
AU - Peters, Eric C.
AU - Ginsberg, Mark H.
AU - Schultz, Peter G.
AU - Moon, Randall T.
AU - Ding, Sheng
PY - 2007/5/1
Y1 - 2007/5/1
N2 - The Wnt/β-catenin signaling pathway regulates cell fate and behavior during embryogenesis, adult tissue homeostasis, and regeneration. When inappropriately activated, the pathway has been linked to colorectal cancer and melanoma, and when attenuated it may contribute to Alzheimer's disease and osteoporosis. Small molecules that modulate Wnt signaling will likely provide new insights into the regulation of this key developmental pathway and ultimately provide pharmacological agents to control Wnt signaling in vivo. To this end, we screened a library of 100,000 small molecules for activity in a cell-based assay of Wnt/β-catenin signaling and discovered a purine derivative, QS11, that synergizes with Wnt-3a ligand in the activation of Wnt/β-catenin signal transduction. Through affinity chromatography and subsequent functional assays, we showed that QS11 binds and inhibits the GTPase activating protein of ADP-ribosylation factor 1 (ARFGAP1), suggesting that QS11 modulates Wnt/β-catenin signaling through an effect on protein trafficking. Consistent with its function as an ARFGAP inhibitor, QS11 inhibits migration of ARFGAP overexpressing breast cancer cells.
AB - The Wnt/β-catenin signaling pathway regulates cell fate and behavior during embryogenesis, adult tissue homeostasis, and regeneration. When inappropriately activated, the pathway has been linked to colorectal cancer and melanoma, and when attenuated it may contribute to Alzheimer's disease and osteoporosis. Small molecules that modulate Wnt signaling will likely provide new insights into the regulation of this key developmental pathway and ultimately provide pharmacological agents to control Wnt signaling in vivo. To this end, we screened a library of 100,000 small molecules for activity in a cell-based assay of Wnt/β-catenin signaling and discovered a purine derivative, QS11, that synergizes with Wnt-3a ligand in the activation of Wnt/β-catenin signal transduction. Through affinity chromatography and subsequent functional assays, we showed that QS11 binds and inhibits the GTPase activating protein of ADP-ribosylation factor 1 (ARFGAP1), suggesting that QS11 modulates Wnt/β-catenin signaling through an effect on protein trafficking. Consistent with its function as an ARFGAP inhibitor, QS11 inhibits migration of ARFGAP overexpressing breast cancer cells.
KW - ARFGAP inhibitor
KW - Regenerative medicine
KW - Small-molecule screen
KW - Wnt signaling
UR - http://www.scopus.com/inward/record.url?scp=34250627652&partnerID=8YFLogxK
U2 - 10.1073/pnas.0702136104
DO - 10.1073/pnas.0702136104
M3 - Article
C2 - 17460038
AN - SCOPUS:34250627652
SN - 0027-8424
VL - 104
SP - 7444
EP - 7448
JO - Proceedings of the National Academy of Sciences of the United States of America
JF - Proceedings of the National Academy of Sciences of the United States of America
IS - 18
ER -