TY - JOUR
T1 - Site-specific monoubiquitination of IκB kinase IKKβ regulates its phosphorylation and persistent activation
AU - Carter, Robert S.
AU - Pennington, Kevin N.
AU - Arrate, Pia
AU - Oltz, Eugene M.
AU - Ballard, Dean W.
PY - 2005/12/30
Y1 - 2005/12/30
N2 - Transcription factor NF-κB governs the expression of multiple genes involved in cell growth, immunity, and inflammation. Nuclear translocation of NF-κB is regulated from the cytoplasm by IκB kinase-β (IKKβ), which earmarks inhibitors of NF-κB for polyubiquination and proteasome-mediated degradation. Activation of IKKβ is contingent upon signal-induced phosphorylation of its T loop at Ser-177/Ser-181. T loop phosphorylation also renders IKKβ a substrate for monoubiquitination in cells exposed to chronic activating cues, such as the Tax oncoprotein or sustained signaling through proinflammatory cytokine receptors. Here we provide evidence that the T loop-proximal residue Lys-163 in IKKβ serves as a major site for signal-induced monoubiquitination with significant regulatory potential. Conservative replacement of Lys-163 with Arg yielded a monoubiquitination-defective mutant of IKKβ that retains kinase activity in Tax-expressing cells but is impaired for activation mediated by chronic signaling from the type 1 receptor for tumor necrosis factor-α. Phosphopeptide mapping experiments revealed that the Lys-163 → Arg mutation also interferes with proper in vivo but not in vitro phosphorylation of cytokine-responsive serine residues located in the distal C-terminal region of IKKβ. Taken together, these data indicate that chronic phosphorylation of IKKβ at Ser-177/Ser-181 leads to monoubiquitin attachment at nearby Lys-163, which in turn modulates the phosphorylation status of IKKβ at select C-terminal serines. This mechanism for post-translational cross-talk may play an important role in the control of IKKβ signaling during chronic inflammation.
AB - Transcription factor NF-κB governs the expression of multiple genes involved in cell growth, immunity, and inflammation. Nuclear translocation of NF-κB is regulated from the cytoplasm by IκB kinase-β (IKKβ), which earmarks inhibitors of NF-κB for polyubiquination and proteasome-mediated degradation. Activation of IKKβ is contingent upon signal-induced phosphorylation of its T loop at Ser-177/Ser-181. T loop phosphorylation also renders IKKβ a substrate for monoubiquitination in cells exposed to chronic activating cues, such as the Tax oncoprotein or sustained signaling through proinflammatory cytokine receptors. Here we provide evidence that the T loop-proximal residue Lys-163 in IKKβ serves as a major site for signal-induced monoubiquitination with significant regulatory potential. Conservative replacement of Lys-163 with Arg yielded a monoubiquitination-defective mutant of IKKβ that retains kinase activity in Tax-expressing cells but is impaired for activation mediated by chronic signaling from the type 1 receptor for tumor necrosis factor-α. Phosphopeptide mapping experiments revealed that the Lys-163 → Arg mutation also interferes with proper in vivo but not in vitro phosphorylation of cytokine-responsive serine residues located in the distal C-terminal region of IKKβ. Taken together, these data indicate that chronic phosphorylation of IKKβ at Ser-177/Ser-181 leads to monoubiquitin attachment at nearby Lys-163, which in turn modulates the phosphorylation status of IKKβ at select C-terminal serines. This mechanism for post-translational cross-talk may play an important role in the control of IKKβ signaling during chronic inflammation.
UR - http://www.scopus.com/inward/record.url?scp=30044437123&partnerID=8YFLogxK
U2 - 10.1074/jbc.M508656200
DO - 10.1074/jbc.M508656200
M3 - Article
C2 - 16267042
AN - SCOPUS:30044437123
SN - 0021-9258
VL - 280
SP - 43272
EP - 43279
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 52
ER -