TY - JOUR
T1 - SIRT6 deficiency culminates in low-turnover osteopenia
AU - Sugatani, Toshifumi
AU - Agapova, Olga
AU - Malluche, Hartmut H.
AU - Hruska, Keith A.
N1 - Publisher Copyright:
© 2015 Elsevier Inc..
PY - 2015/12/1
Y1 - 2015/12/1
N2 - Deficiency of Sirtuin 6 (SIRT6), a chromatin-related deacetylase, in mice reveals severe premature aging phenotypes including osteopenia. However, the underlying molecular mechanisms of SIRT6 in bone metabolism are unknown. Here we show that SIRT6 deficiency in mice produces low-turnover osteopenia caused by impaired bone formation and bone resorption, which are mechanisms similar to those of age-related bone loss. Mechanistically, SIRT6 interacts with runt-related transcription factor 2 (Runx2) and osterix (Osx), which are the two key transcriptional regulators of osteoblastogenesis, and deacetylates histone H3 at Lysine 9 (H3K9) at their promoters. Hence, excessively elevated Runx2 and Osx in SIRT6-/- osteoblasts lead to impaired osteoblastogenesis. In addition, SIRT6 deficiency produces hyperacetylation of H3K9 in the promoter of dickkopf-related protein 1 (Dkk1), a potent negative regulator of osteoblastogenesis, and osteoprotegerin, an inhibitor of osteoclastogenesis. Therefore, the resulting up-regulation of Dkk1 and osteoprotegerin levels contribute to impaired bone remodeling, leading to osteopenia with a low bone turnover in SIRT6-deficient mice. These results establish a new link between SIRT6 and bone remodeling that positively regulates osteoblastogenesis and osteoclastogenesis.
AB - Deficiency of Sirtuin 6 (SIRT6), a chromatin-related deacetylase, in mice reveals severe premature aging phenotypes including osteopenia. However, the underlying molecular mechanisms of SIRT6 in bone metabolism are unknown. Here we show that SIRT6 deficiency in mice produces low-turnover osteopenia caused by impaired bone formation and bone resorption, which are mechanisms similar to those of age-related bone loss. Mechanistically, SIRT6 interacts with runt-related transcription factor 2 (Runx2) and osterix (Osx), which are the two key transcriptional regulators of osteoblastogenesis, and deacetylates histone H3 at Lysine 9 (H3K9) at their promoters. Hence, excessively elevated Runx2 and Osx in SIRT6-/- osteoblasts lead to impaired osteoblastogenesis. In addition, SIRT6 deficiency produces hyperacetylation of H3K9 in the promoter of dickkopf-related protein 1 (Dkk1), a potent negative regulator of osteoblastogenesis, and osteoprotegerin, an inhibitor of osteoclastogenesis. Therefore, the resulting up-regulation of Dkk1 and osteoprotegerin levels contribute to impaired bone remodeling, leading to osteopenia with a low bone turnover in SIRT6-deficient mice. These results establish a new link between SIRT6 and bone remodeling that positively regulates osteoblastogenesis and osteoclastogenesis.
KW - Osteoblast
KW - Osteoclast
KW - Osteopenia
KW - Osx
KW - Runx2
KW - SIRT6
UR - http://www.scopus.com/inward/record.url?scp=84937720309&partnerID=8YFLogxK
U2 - 10.1016/j.bone.2015.07.018
DO - 10.1016/j.bone.2015.07.018
M3 - Article
C2 - 26189760
AN - SCOPUS:84937720309
SN - 8756-3282
VL - 81
SP - 168
EP - 177
JO - Bone
JF - Bone
ER -