Single-nucleotide human disease mutation inactivates a blood-regenerative GATA2 enhancer

Alexandra A. Soukup, Ye Zheng, Charu Mehta, Jun Wu, Peng Liu, Miao Cao, Inga Hofmann, Yun Zhou, Jing Zhang, Kirby D. Johnson, Kyunghee Choi, Sunduz Keles, Emery H. Bresnick

Research output: Contribution to journalArticlepeer-review

44 Scopus citations

Abstract

The development and function of stem and progenitor cells that produce blood cells are vital in physiology. GATA-binding protein 2 (GATA2) mutations cause GATA-2 deficiency syndrome involving immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA-2 physiological activities necessitate that it be strictly regulated, and cell type–specific enhancers fulfill this role. The +9.5 intronic enhancer harbors multiple conserved cis-elements, and germline mutations of these cis-elements are pathogenic in humans. Since mechanisms underlying how GATA2 enhancer disease mutations impact hematopoiesis and pathology are unclear, we generated mouse models of the enhancer mutations. While a multi-motif mutant was embryonically lethal, a single-nucleotide Ets motif mutant was viable, and steady-state hematopoiesis was normal. However, the Ets motif mutation abrogated stem/progenitor cell regeneration following stress. These results reveal a new mechanism in human genetics, in which a disease predisposition mutation inactivates enhancer regenerative activity, while sparing developmental activity. Mutational sensitization to stress that instigates hematopoietic failure constitutes a paradigm for GATA-2 deficiency syndrome and other contexts of GATA-2–dependent pathogenesis.

Original languageEnglish
Pages (from-to)1180-1192
Number of pages13
JournalJournal of Clinical Investigation
Volume129
Issue number3
DOIs
StatePublished - Mar 2019

Fingerprint

Dive into the research topics of 'Single-nucleotide human disease mutation inactivates a blood-regenerative GATA2 enhancer'. Together they form a unique fingerprint.

Cite this