Abstract
In Escherichia coli, protein degradation in synthetic circuits is commonly achieved by the ssrA-tagged degradation system. In this work, we show that the degradation kinetics for the green fluorescent protein fused with the native ssrA tag in each cell exhibits the zeroth-order limit of the Michaelis-Menten kinetics, rather than the commonly assumed first-order. When measured in a population, the wide distribution of protein levels in the cells distorts the true kinetics and results in a first-order protein degradation kinetics as a population average. Using the synthetic gene-metabolic oscillator constructed previously, we demonstrated theoretically that the zeroth-order kinetics significantly enlarges the parameter space for oscillation and thus enhances the robustness of the design under parametric uncertainty.
Original language | English |
---|---|
Article number | 130 |
Journal | Molecular Systems Biology |
Volume | 3 |
DOIs | |
State | Published - 2007 |
Keywords
- Population heterogeneity
- Protein degradation
- Single-cell measurements
- Synthetic biological circuits