Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker

Kidney Precision Medicine Project (KPMP),5 and Nephrotic Syndrome Study Network (NEPTUNE)

Research output: Contribution to journalArticle

1 Scopus citations

Abstract

To define cellular mechanisms underlying kidney function and failure, the KPMP analyzes biopsy tissue in a multicenter research network to build cell-level process maps of the kidney. This study aimed to establish a single cell RNA sequencing strategy to use cell-level transcriptional profiles from kidney biopsies in KPMP to define molecular subtypes in glomerular diseases. Using multiple sources of adult human kidney reference tissue samples, 22,268 single cell profiles passed KPMP quality control parameters. Unbiased clustering resulted in 31 distinct cell clusters that were linked to kidney and immune cell types using specific cell markers. Focusing on endothelial cell phenotypes, in silico and in situ hybridization methods assigned 3 discrete endothelial cell clusters to distinct renal vascular beds. Transcripts defining glomerular endothelial cells (GEC) were evaluated in biopsies from patients with 10 different glomerular diseases in the NEPTUNE and European Renal cDNA Bank (ERCB) cohort studies. Highest GEC scores were observed in patients with focal segmental glomerulosclerosis (FSGS). Molecular endothelial signatures suggested 2 distinct FSGS patient subgroups with α-2 macroglobulin (A2M) as a key downstream mediator of the endothelial cell phenotype. Finally, glomerular A2M transcript levels associated with lower proteinuria remission rates, linking endothelial function with long-term outcome in FSGS.

Original languageEnglish
Article numbere133267
JournalJCI Insight
Volume5
Issue number6
DOIs
StatePublished - Mar 26 2020

Fingerprint Dive into the research topics of 'Single cell transcriptomics identifies focal segmental glomerulosclerosis remission endothelial biomarker'. Together they form a unique fingerprint.

Cite this